Patents by Inventor FRÉDERIC NABKI

FRÉDERIC NABKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11444656
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: September 13, 2022
    Assignee: Transfert Plus, Societe En Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Publication number: 20220263251
    Abstract: Ultra-Wideband (UWB) technology is a wireless technology for the transmission of large amounts of digital data as modulated coded impulses over a very wide frequency spectrum with very low power over a short distance. However, to support their deployment in a wide range of applications it would be beneficial to provide solutions which: exploit multiple directive antennas oriented in different directions to ensure spatial filtering of undesired signals and increase signal strength; exploit dynamic configuration of the multi-pulse bundles employed to transmit the bits/symbols within the packets to enhance link quality of service; exploit dynamic configuration of the band or bands which the transmitter operates upon; and exploit antenna sub-systems providing omnidirectional radiation patterns with implementations offering filtering and balun functions with small footprint and low cost.
    Type: Application
    Filed: March 18, 2020
    Publication date: August 18, 2022
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MICHIEL SOER, GABRIEL MORIN-LAPORTE, MOHAMMAD TAHERZADEH-SANI, RAPHAEL GUIMOND, MOHAMMAD HASSAN RAHMANI
  • Patent number: 11394424
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: July 19, 2022
    Assignee: Transfert Plus, Societe En Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer, Rabia Rassil
  • Patent number: 11387804
    Abstract: Micro-machined acoustic and ultrasonic transducer (MAUT), particularly piezoelectric MAUT (PMAUT), performance tradeoffs have meant reasonable pixel depth resolution necessitated low quality factor (Q) transducers with power distributed over a large bandwidth yielding modest imaging ranges whilst high-Q transducers providing higher acoustic power output for longer imaging ranges exhibit extended ringing limiting pixel depth information. Accordingly, the inventors have established MAUTs supporting high-Q transducers for long-range high-resolution imaging by integrating electromechanical actuators (dampers) which can be selectively engaged to mechanically damped the MAUT. In several applications PMAUT arrays are required where all transducer elements should have almost identical resonant frequencies. However, prior art fabrication processes have tended to produce PMAUTs with large inter-chip and inter-wafer variances.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: July 12, 2022
    Assignee: ECOLE TECHNOLOGIE SUPERIEURE
    Inventors: Alexandre Robichaud, Paul-Vahe Cicek, Dominic Deslandes, Frederic Nabki
  • Publication number: 20220182093
    Abstract: Ultra-Wideband (UWB) wireless technology transmits digital data as modulated coded impulses over a very wide frequency spectrum with very low power over a short distance. Accordingly, the inventors have established UWB devices which accommodate and adapt to inaccuracies, errors, or issues within the implemented electronics, hardware, firmware, and software. Beneficially, UWB receivers may accommodate offsets in absolute frequency between their frequency source and the transmitter, accommodate drift arising from phase locked loop and/or from relative clock frequency offsets of the remote transmitter and local receiver. UWB devices may also employ modulation coding schemes offering increased efficiency with respect to power, data bits per pulse transmitted, and enabled operation at higher output power whilst complying with regulatory emission requirements.
    Type: Application
    Filed: March 18, 2020
    Publication date: June 9, 2022
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MICHIEL SOER, GABRIEL MORIN-LAPORTE, MOHAMMAD TAHERZADEH-SANI
  • Publication number: 20220173761
    Abstract: Ultra-Wideband (UWB) wireless technology transmits digital data as modulated coded impulses over a very wide frequency spectrum with very low power over a short distance. To support extended operation, particularly with battery power sources, the inventors have established UWB devices which support wake-up from deep sleep modes when these devices exploit low frequency clock sources for ultra-low power consumption. Further, power consumption may be reduced by exploiting transistors or so-called compounded MOSFET structures whose effective gain and output resistance exceeds any single transistor irrespective of length or by employing biasless low power differential (exponential) transconductance stages within operational transconductance amplifiers in order to provide very high gain low power amplification stages. Further, the inventors have established voltage reference sources that consume very low current, a few nA, and ultra-low power low dropout regulators.
    Type: Application
    Filed: March 18, 2020
    Publication date: June 2, 2022
    Inventors: Frederic NABKI, Dominic DESLANDE, Michiel SOER, Gabriel MORIN-LAPORTE, Mohammad TAHERZADEH-SANI
  • Publication number: 20220149885
    Abstract: Within many applications impulse radio based ultra-wideband (IR-UWB) transmission offers significant benefits for very short range high data rate communications when compared with existing standards and protocols. In many of these applications the main design goals are very low power consumption and very low complexity design for easy integration and cost reduction. Digitally programmable IR-UWB transmitters using an on-off keying modulation scheme on a 0.13 microns CMOS process operating on 1.2V supply and yielding power consumption as low as 0.9 mW at a 10 Mbps data rate with dynamic power control are enabled. The IR-UWB transmitters support new frequency hopping techniques providing more efficient spectrum usage and dynamic allocation of the spectrum when transmitting in highly congested frequency bands. Biphasic scrambling is also introduced for spectral line reduction.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 12, 2022
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, ALEXANDRE DESMARAIS, ANHKIET VUONG, ANIS BOUNIF, WANG YU HAO, WILLIAM PHAM
  • Patent number: 11218959
    Abstract: Within many applications impulse radio based ultra-wideband (IR-UWB) transmission offers significant benefits for very short range high data rate communications when compared with existing standards and protocols. In many of these applications the main design goals are very low power consumption and very low complexity design for easy integration and cost reduction. Digitally programmable IR-UWB transmitters using an on-off keying modulation scheme on a 0.13 microns CMOS process operating on 1.2 V supply and yielding power consumption as low as 0.9 mW at a 10 Mbps data rate with dynamic power control are enabled. The IR-UWB transmitters support new frequency hopping techniques providing more efficient spectrum usage and dynamic allocation of the spectrum when transmitting in highly congested frequency bands. Biphasic scrambling is also introduced for spectral line reduction.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 4, 2022
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Alexandre Desmarais, Anhkiet Vuong, Anis Bounif, Wang Yu Hao, William Pham
  • Patent number: 11201638
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 14, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Publication number: 20210359715
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 18, 2021
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Publication number: 20210349265
    Abstract: Wavelength division multiplexing (WDM) has enabled telecommunication service providers to provide multiple independent multi-gigabit channels on one optical fiber. To meet demands for improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, re-configurability, and lower cost monolithic optical circuit technologies and microelectromechanical systems (MEMS) have become increasingly important. However, further integration via microoptoelectromechanical systems (MOEMS) of monolithically integrated optical waveguides upon a MEMS provide further integration opportunities and functionality options. Such MOEMS may include MOEMS mirrors and optical waveguides capable of deflection under electronic control. In contrast to MEMS devices where the MEMS is simply used to switch between two positions the state of MOEMS becomes important in all transition positions.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 11, 2021
    Inventors: FRANCOIS MENARD, MICHAEL MENARD, FREDERIC NABKI, MARTIN BERARD, JONATHAN BRIERE
  • Publication number: 20210344376
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER
  • Patent number: 11159202
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 26, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11125948
    Abstract: Hybrid optical integration places very strict manufacturing tolerances and performance requirements upon the multiple elements to exploit passive alignment techniques as well as having additional processing requirements. Alternatively, active alignment and soldering/fixing where feasible is also complex and time consuming with 3, 4, or 6-axis control of each element. However, microelectromechanical (MEMS) systems can sense, control, and activate mechanical processes on the micro scale. Beneficially, therefore the inventors combine silicon MEMS based micro-actuators with silicon CMOS control and drive circuits in order to provide alignment of elements within a silicon optical circuit either with respect to each other or with other optical elements hybridly integrated such as compound semiconductor elements. Such inventive MEMS based circuits may be either maintained as active during deployment or powered off once the alignment has been “locked” through an attachment/retention/latching process.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: September 21, 2021
    Assignee: Aeponyx Inc.
    Inventors: Francois Menard, Frederic Nabki, Michael Menard, Martin Berard
  • Patent number: 11095338
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: August 17, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11086079
    Abstract: Wavelength division multiplexing (WDM) has enabled telecommunication service providers to provide multiple independent multi-gigabit channels on one optical fiber. To meet demands for improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, re-configurability, and lower cost monolithic optical circuit technologies and microelectromechanical systems (MEMS) have become increasingly important. However, further integration via microoptoelectromechanical systems (MOEMS) of monolithically integrated optical waveguides upon a MEMS provide further integration opportunities and functionality options. Such MOEMS may include MOEMS mirrors and optical waveguides capable of deflection under electronic control. In contrast to MEMS devices where the MEMS is simply used to switch between two positions the state of MOEMS becomes important in all transition positions.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 10, 2021
    Assignee: Aeponyx Inc.
    Inventors: Francois Menard, Michael Menard, Frederic Nabki, Martin Berard, Jonathan Briere
  • Patent number: 11086078
    Abstract: Wavelength division multiplexing (WDM) has enabled telecommunication service providers to provide multiple independent multi-gigabit channels on one optical fiber. To meet demands for improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, re-configurability, and lower cost monolithic optical circuit technologies and microelectromechanical systems (MEMS) have become increasingly important. However, further integration via microoptoelectromechanical systems (MOEMS) of monolithically integrated optical waveguides upon a MEMS provide further integration opportunities and functionality options. Such MOEMS may include MOEMS mirrors and optical waveguides capable of deflection under electronic control. In contrast to MEMS devices where the MEMS is simply used to switch between two positions the state of MOEMS becomes important in all transition positions.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 10, 2021
    Assignee: Aeponyx Inc.
    Inventors: Francois Menard, Michael Menard, Frederic Nabki, Martin Berard, Jonathan Briere
  • Patent number: 11070248
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: July 20, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Publication number: 20210203379
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Such UWB systems through their receivers may operate in the presence of interfering signals and should provide for robust communications. Accordingly, an accurate and sharp filter that operates at low power is required and beneficially one that does not require a highly accurate power heavy clock. Further, many UWB applications require location and/or range finding of other elements and it would therefore be beneficial to provide a UWB based range finding and/or location capability removing the requirement to add additional device complexity and, typically significant, power consumption.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: FREDERIC NABKI, DOMINIC DESLANDES, MOHAMMAD TAHERZADEH-SANI, MICHIEL SOER, RABIA RASSIL
  • Patent number: 11009664
    Abstract: Wavelength division multiplexing (WDM) has enabled telecommunication service providers to provide multiple independent multi-gigabit channels on one optical fiber. To Microoptoelectromechanical systems (MOEMS) integrating optical waveguides upon a MEMS can provide further integration opportunities and functionality options. Improvements to the design and implementation of MOEMS devices are presented where monolithically integrated optical waveguides are directly supported, moved and/or deformed upon a beam coupled to and manipulated by a MEMS. Accordingly, such MOEMS can provide programmable functionality by enabling alignment of the optical waveguide upon the MEMS to one of multiple optical waveguides disposed relative to the moving facet of the rotating optical waveguide.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: May 18, 2021
    Assignee: Aeponyx Inc.
    Inventors: Francois Menard, Michael Menard, Frederic Nabki, Martin Berard, Jonathan Briere