Patents by Inventor François Pelletier

François Pelletier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121919
    Abstract: Aspects of the subject disclosure may include, for example, a process that provides a semiconductor substrate and forms repeating, conductive patterns configured for coupling to active circuitry. Each pattern comprises a group of thermally conductive layers, wherein the group of thermally layers is thermally coupled to a thermal source generated by the active circuitry. Thermally conductive vias interconnect the group of thermally conductive layers, wherein a combination of the vias and the group of thermally conductive layers is configured to transfer heat from the thermal source with a desired directionality. The first repeating patterns are thermally coupled to each other to combine the desired directionality of each of the patterns, wherein the combination results in a distributed directionality of the heat from the thermal source thereby reducing a localized concentration of the heat. Other embodiments are disclosed.
    Type: Application
    Filed: October 6, 2022
    Publication date: April 11, 2024
    Applicant: CIENA CORPORATION
    Inventors: Charles Baudot, Sean Sebastian O'Keefe, Francois Pelletier, Antoine Bois
  • Publication number: 20230314310
    Abstract: Systems and methods provide optical referencing in an optical system including a plurality of optical devices with variable perturbative drift rates. A method includes, subsequent to determining a tuning rate of one or more interrogator devices, which are tunable, and subsequent to locking the plurality of optical devices including the one or more interrogator devices, detecting a drift in spectrum of the optical system based on a perturbation; and tracking the drift based on variable perturbative drift rates of each of the plurality of optical devices which are each exposed to the perturbation.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Antoine Bois, Claude Gamache, Francois Pelletier
  • Publication number: 20230299855
    Abstract: A coherent receiver includes a receive signal path including i) an input configured to connect a receive signal, ii) one or more signal paths connected to the input and to one or more optical hybrids, and iii) a variable optical attenuator (VOA) in each of the one or more signal paths; and a local oscillator (LO) signal path including i) an input configured to connect to an LO and the one or more optical hybrids, and ii) one or more complementary VOAs located between the input and the one or more optical hybrids, wherein the one or more complementary VOAs are configured to cancel any phase changes from the VOA in each of the one or more signal paths. The VOA in each of the one or more signal paths and the one or more complementary VOAs can be p-i-n junctions.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Inventors: Michel Poulin, Antoine Bois, Tom Luk, François Pelletier, Sean Sebastian O'Keefe
  • Publication number: 20230245993
    Abstract: A method including disposing a structural adhesive onto an elevated surface of a first chip that includes a cavity disposed below the elevated surface. The method includes contacting a carrier with the structural adhesive. The carrier includes a second chip that optically aligns with a lateral surface of the cavity. The method includes curing the structural adhesive so that the carrier and host chip are mechanically anchored. An apparatus includes a first chip including a cavity located between lateral walls of the first chip and a carrier mechanically anchored with the first chip at a top portion of the lateral walls. The carrier includes a second chip that optically aligns with the first chip at a side portion of one of the lateral walls. The first and second chips are free of contact at a bottom surface of the second chip and a bottom surface of the cavity.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 3, 2023
    Applicant: Ciena Corporation
    Inventors: Raphael Beaupré-Laflamme, François Pelletier, Louis-Philippe Bibeau
  • Patent number: 11480745
    Abstract: At least a portion of an integrated circuit wafer includes at least one layer in which two or more waveguides are formed. A cavity is formed in the integrated circuit wafer. At least one die, comprising a photonic integrated circuit, has: at least one edge on which there are two or more optical mode defining structures in proximity to respective optical mode defining structures on at least one surface of the cavity, a bottom surface secured to a bottom surface of the cavity, and a top surface on which there is at least one metal contact.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: October 25, 2022
    Assignee: Ciena Corporation
    Inventors: Charles Baudot, Simon Savard, François Pelletier, Claude Gamache
  • Publication number: 20220187550
    Abstract: At least a portion of an integrated circuit wafer includes at least one layer in which two or more waveguides are formed. A cavity is formed in the integrated circuit wafer. At least one die, comprising a photonic integrated circuit, has: at least one edge on which there are two or more optical mode defining structures in proximity to respective optical mode defining structures on at least one surface of the cavity, a bottom surface secured to a bottom surface of the cavity, and a top surface on which there is at least one metal contact.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 16, 2022
    Applicant: Ciena Corporation
    Inventors: Charles Baudot, Simon Savard, François Pelletier, Claude Gamache
  • Patent number: 11227790
    Abstract: One or more photonic structures are formed within one or more layers over a surface of a substrate, and multiple trenches are formed through the one or more layers housing devices coupled to one or more of the photonic structures. The trenches may include: a first trench that has a bottom surface within the substrate that has a first surface topology characterized by a first surface roughness at a first depth within the substrate relative to the surface of the substrate, and a second trench that has a bottom surface within the substrate that has a second surface topology characterized by a second surface roughness at a second depth within the substrate relative to the surface of the substrate. The first surface roughness may be greater than the second surface roughness, and the second depth may be greater than the first depth.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 18, 2022
    Assignee: Ciena Corporation
    Inventors: Benoît Filion, Charles Baudot, François Pelletier, Christine Latrasse
  • Patent number: 11217713
    Abstract: Fabricating a photonic integrated circuit includes fabricating structures in one or more silicon layers. At least a first silicon layer comprises: one or more photonic structures, where the photonic structures include one or more waveguides and one or more photodetectors, and one or more light absorbing structures, where at least some of the light absorbing structures include doped silicon. Fabricating the photonic integrated circuit also includes fabricating at least one waveguide in the photonic integrated circuit for receiving light into at least one of the silicon layers.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 4, 2022
    Assignee: Ciena Corporation
    Inventors: François Pelletier, Sean Sebastian O'Keefe, Christine Latrasse, Yves Painchaud
  • Publication number: 20210167230
    Abstract: Fabricating a photonic integrated circuit includes fabricating structures in one or more silicon layers. At least a first silicon layer comprises: one or more photonic structures, where the photonic structures include one or more waveguides and one or more photodetectors, and one or more light absorbing structures, where at least some of the light absorbing structures include doped silicon. Fabricating the photonic integrated circuit also includes fabricating at least one waveguide in the photonic integrated circuit for receiving light into at least one of the silicon layers.
    Type: Application
    Filed: January 14, 2020
    Publication date: June 3, 2021
    Inventors: François Pelletier, Sean Sebastian O'Keefe, Christine Latrasse, Yves Painchaud
  • Patent number: 10830638
    Abstract: A photodetector circuit is disclosed. The photodetector circuit includes an optical input configured to receive a source optical signal for detection by the photodetector circuit, an optical waveguide for coupling the optical input and at least one side of a plurality of sides of a photodiode, wherein the optical waveguide is configured to generate a first optical signal and a second optical signal from the source optical signal, and the photodiode coupled to the first optical waveguide, where the photodiode is illuminated on the at least one side by the first and second optical signals at different locations on the photodiode, where the photodiode generates a photocurrent based on the first and second optical signals reducing photocurrent saturation. Providing a delay between the first and second optical signals reduces an out-of-band frequency response of the photodiode circuit.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: November 10, 2020
    Assignee: Ciena Corporation
    Inventors: Francois Pelletier, Michel Poulin, Yves Painchaud, Michael Vitic, Christine Latrasse, Alexandre Delisle-Simard
  • Patent number: 10811279
    Abstract: A flip-chip manufacture is described. Methods of blocking adhesive underfill in flip-chip high speed component manufacture include creating topology discontinuities to prevent adhesive underfill material from interacting with RF sensitive regions on substrates.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 20, 2020
    Assignee: Ciena Corporation
    Inventors: Francois Pelletier, Michael Vitic
  • Patent number: 10677986
    Abstract: Systems and methods for non-hermetic Semiconductor Optical Amplifier (SOA) integration on a Silicon photonic (SiP) chip using Complementary Metal-Oxide-Semiconductor (CMOS) processes include creating a trench for placement of the SOA, wherein the trench is between two Spot Size Converters (SSCs) located on the SiP chip outside of the trench; forming pedestals in the trench in one or more existing CMOS layers of the SiP chip to guide vertical alignment of the SOA with the SSCs during its placement; and depositing metallic traces and a solder pattern in the trench above the pedestals to enable the SOAs to electrically bond and rest on the pedestals during reflow.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: June 9, 2020
    Assignee: Ciena Corporation
    Inventor: Francois Pelletier
  • Publication number: 20200166705
    Abstract: Systems and methods for non-hermetic Semiconductor Optical Amplifier (SOA) integration on a Silicon photonic (SiP) chip using Complementary Metal-Oxide-Semiconductor (CMOS) processes include creating a trench for placement of the SOA, wherein the trench is between two Spot Size Converters (SSCs) located on the SiP chip outside of the trench; forming pedestals in the trench in one or more existing CMOS layers of the SiP chip to guide vertical alignment of the SOA with the SSCs during its placement; and depositing metallic traces and a solder pattern in the trench above the pedestals to enable the SOAs to electrically bond and rest on the pedestals during reflow.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventor: Francois Pelletier
  • Publication number: 20190391006
    Abstract: A photodetector circuit is disclosed. The photodetector circuit includes an optical input configured to receive a source optical signal for detection by the photodetector circuit, an optical waveguide for coupling the optical input and at least one side of a plurality of sides of a photodiode, wherein the optical waveguide is configured to generate a first optical signal and a second optical signal from the source optical signal, and the photodiode coupled to the first optical waveguide, where the photodiode is illuminated on the at least one side by the first and second optical signals at different locations on the photodiode, where the photodiode generates a photocurrent based on the first and second optical signals reducing photocurrent saturation. Providing a delay between the first and second optical signals reduces an out-of-band frequency response of the photodiode circuit.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Francois Pelletier, Michel Poulin, Yves Painchaud, Michael Vitic, Christine Latrasse, Alexandre Delisle-Simard
  • Patent number: 10444445
    Abstract: An integrated silicon-based photo-detection system, fabricated in an integrated silicon based structure on a silicon-on-insulator (SOI) wafer, includes a photodiode fabricated on an isolated area surrounded by a light barrier, where the light barrier is an area where the SOI wafer is removed, an optical waveguide that guides an input signal light into the photodiode, and external electrical traces that the free electron carriers flow into as photocurrent. A method of fabricating an integrated silicon-based photo-detection system in an integrated silicon based structure on a silicon-on-insulator (SOI) wafer, includes performing deep etching to create a light barrier surrounding an isolated area on the SOI wafer, fabricating a photodiode in the isolated area surrounded by the light barrier, fabricating an optical waveguide that guides an input signal light into the photodiode, and wirebonding external electrical traces to connect to the remainder of the integrated silicon based structure.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 15, 2019
    Assignee: Ciena Corporation
    Inventor: Francois Pelletier
  • Publication number: 20190067037
    Abstract: A flip-chip manufacture is described. Methods of blocking adhesive underfill in flip-chip high speed component manufacture include creating topology discontinuities to prevent adhesive underfill material from interacting with RF sensitive regions on substrates.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Inventors: Francois PELLETIER, Michael VITIC
  • Publication number: 20180233606
    Abstract: An integrated silicon-based photo-detection system, fabricated in an integrated silicon based structure on a silicon-on-insulator (SOI) wafer, includes a photodiode fabricated on an isolated area surrounded by a light barrier, where the light barrier is an area where the SOI wafer is removed, an optical waveguide that guides an input signal light into the photodiode, and external electrical traces that the free electron carriers flow into as photocurrent. A method of fabricating an integrated silicon-based photo-detection system in an integrated silicon based structure on a silicon-on-insulator (SOI) wafer, includes performing deep etching to create a light barrier surrounding an isolated area on the SOI wafer, fabricating a photodiode in the isolated area surrounded by the light barrier, fabricating an optical waveguide that guides an input signal light into the photodiode, and wirebonding external electrical traces to connect to the remainder of the integrated silicon based structure.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 16, 2018
    Applicant: Ciena Corporation
    Inventor: Francois Pelletier
  • Patent number: 9986747
    Abstract: A process for preparing a stable and homogenous fruit preparation, includes the steps of: (i) preparing a fruit mixture by mixing fruit pieces, optionally in the presence of a fruit matrix, with sugar in an amount included between 10% and 60% by weight relative to the total weight of the fruit preparation, (ii) treating the fruit mixture obtained in step (i) at a temperature ranging between 40° C. and 90° C., and at a pressure from 50 mbar to 1000 mbar, during 15 to 90 minutes, so as to obtain a concentrated fruit preparation having a Brix degree at 20° C. ranging between 50° and 75°, (iii) optionally submitting the concentrated fruit preparation to a heat treatment, at a temperature ranging between 90° C. and 120° C., (iv) cooling the concentrated fruit preparation obtained in step (ii) or, when step (iii) is performed, cooling the concentrated fruit preparation obtained in step (iii), to storage temperature.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: June 5, 2018
    Assignee: COMPAGNIE GERVAIS DANONE
    Inventors: Eric Taillan, Jean-Francois Pelletier, Christelle Lacorre, Vanessa Gauthier
  • Patent number: 9890701
    Abstract: A toroidal engine that can be powered by a fuel/air mixture or by a compressed gas source. The toroidal engine uses one-way bearings to transfer torque generated in a toroidal chamber directly to a drive shaft. Pairs of pistons are mounted on two crank assemblies, which are concentric with the drive shaft. One-way bearings allow the crank assemblies to turn, one at a time, in one direction only. The crank assemblies are directly coupled to the drive shaft, which eliminates the need for complex gear and linkage arrangements. A system can be used with the toroidal engine to alternately stop the crank assemblies at a pre-determined position and to time the ignition of the engine.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: February 13, 2018
    Assignee: MONASHEE PUMPS INC.
    Inventors: Braden Murphy, Aziz Martakoush, Adam Krajewski, Brett Dickey, Jean-Francois Pelletier, Darrel Doman
  • Patent number: 9851521
    Abstract: A connectorized optical chip assembly connectable to an external optical fiber having a fiber connector is provided. The connectorized optical chip assembly includes a substrate, an optical chip having an on-chip optical waveguide and a connectorized interface. The connectorized interface includes an optical coupling element mounted in optical alignment with the on-chip optical waveguide. The connectorized interface includes a chip connector engaging the optical coupling element and configured for mating with the fiber connector of the external optical fiber, so as to provide an optical coupling of light between the optical coupling element and the external optical fiber. The connectorized optical chip assembly also includes a mechanical support structure supporting the connectorized interface onto the substrate. Preferably, the components of the connectorized optical assembly are made of materials heat resistant to temperatures used to melt solder in surface mount processes.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: December 26, 2017
    Assignee: Ciena Corporation
    Inventors: Francois Pelletier, Christine Latrasse, Marie-Josée Picard, Michel Poulin, Yves Painchaud