Patents by Inventor Francesco A. Campisano

Francesco A. Campisano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210380390
    Abstract: A chiller for cooling a beverage includes a reservoir configured to hold a heat exchange fluid and an evaporator coil arranged within the reservoir. The evaporator coil includes a plurality of windings configured to circulate a coolant, and projections extending from an exterior surface of one or more of the plurality of windings. The chiller further includes a chiller coil arranged in the reservoir, wherein the beverage is configured to flow through the chiller coil. When the coolant is circulated through the plurality of windings of the evaporator coil, a bank of frozen heat exchange fluid forms on the windings and on the projections.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 9, 2021
    Inventors: Giancarlo FANTAPPIE, Francesco CAMPISANO, Paolo DIMARCO, Steven T. JERSEY
  • Patent number: 10156882
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: December 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Patent number: 10152107
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: December 11, 2018
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Publication number: 20170102761
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Application
    Filed: October 27, 2015
    Publication date: April 13, 2017
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Publication number: 20170102732
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Patent number: 8014651
    Abstract: Trick mode playback is implemented by disengaging a frame synchronization signal, and then decoding “I” and “P” frames to two (or more) buffers. Specifically, each buffer has a pointer that is associated with a memory/origin address. The pointers are locked in place by disengaging the frame synchronization signal. Once the pointers are locked in place, the “I” frames and “P” frames are decoded to the two buffers in an alternating fashion based on a continuous swapping of the memory addresses associated with the two pointers. Because both “I” and “P” frames (as opposed to only “I” frames) are decoded and displayed, the trick mode playback appears smoother. In addition, because the frame synchronization signal was disengaged, the frames can be decoded at a rate faster than a single frame time. That is, one frame need not be completely decoded and read out before the next frame is decoded.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Dennis P. Cheney
  • Patent number: 7729421
    Abstract: Loss of decoding time prior to the vertical synchronization signal when motion video is arbitrarily scaled and positioned by placing the frame switch point at the completion of frame decoding and synchronizing the bottom border of the scaled image therewith while maintaining low latency of decoded data. High latency operation is provided only when necessitated by minimal spill buffer capacity and in combination with fractional image size reduction in the decoding path in order to maintain image resolution without requiring additional memory.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Francesco Campisano, Dennis Cheney, David A. Hrusecky
  • Patent number: 7050113
    Abstract: A digital video stream is digitally scaled to properly display on a device having a horizontal to vertical aspect ratio different than the source aspect ratio leaving a blank area on the device. Graphic data is digitally scaled separately to extend partially or completely into and therefore use the blank area. A compositing blender digitally combines the two prior to a display encoder which produces analog signals for driving the display device.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 23, 2006
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, David Allen Hrusecky, Bryan Jay Lloyd
  • Patent number: 6996174
    Abstract: A digital video decoder system, method and article of manufacture are provided having integrated scaling capabilities for presentation of video in full size or a predetermined reduced size, while at the same time allowing for reduced external memory requirements for frame buffer storage. The integrated system utilizes an existing decimation unit to scale the decoded stream of video data when the system is in scaled video mode. Display mode switch logic oversees switching between normal video mode and scaled video mode, wherein the switching occurs without perceptual degradation of a display of the decoded stream of video data. Scaled decoded video frames are buffered in a frame buffer which is partitioned depending upon whether the digital video decoding system is in normal video mode or scaled video mode. In scaled video mode, the frame buffer accommodates both full size I and P frames, as well as scaled I, P & B frames.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: February 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Dennis P. Cheney, David A. Hrusecky, Chuck H. Ngai, Ronald S. Svec
  • Publication number: 20040264924
    Abstract: Trick mode playback is implemented by disengaging a frame synchronization signal, and then decoding “I” and “P” frames to two (or more) buffers. Specifically, each buffer has a pointer that is associated with a memory/origin address. The pointers are locked in place by disengaging the frame synchronization signal. Once the pointers are locked in place, the “I” frames and “P” frames are decoded to the two buffers in an alternating fashion based on a continuous swapping of the memory addresses associated with the two pointers. Because both “I” and “P” frames (as opposed to only “I” frames) are decoded and displayed, the trick mode playback appears smoother. In addition, because the frame synchronization signal was disengaged, the frames can be decoded at a rate faster than a single frame time. That is, one frame need not be completely decoded and read out before the next frame is decoded.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Applicant: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Dennis P. Cheney
  • Publication number: 20030184675
    Abstract: A digital video stream is digitally scaled to properly display on a device having a horizontal to vertical aspect ratio different than the source aspect ratio leaving a blank area on the device. Graphic data is digitally scaled separately to extend partially or completely into and therefore use the blank area. A compositing blender digitally combines the two prior to a display encoder which produces analog signals for driving the display device.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 2, 2003
    Applicant: International Business Machines Corporation
    Inventors: Francesco A. Campisano, David Allen Hrusecky, Bryan Jay Lloyd
  • Publication number: 20030156650
    Abstract: Loss of decoding time prior to the vertical synchronization signal when motion video is arbitrarily scaled and positioned by placing the frame switch point at the completion of frame decoding and synchronizing the bottom border of the scaled image therewith while maintaining low latency of decoded data. High latency operation is provided only when necessitated by minimal spill buffer capacity and in combination with fractional image size reduction in the decoding path in order to maintain image resolution without requiring additional memory.
    Type: Application
    Filed: February 20, 2002
    Publication date: August 21, 2003
    Inventors: Francesco A. Campisano, Dennis P. Cheney, David A. Hrusecky
  • Publication number: 20030002584
    Abstract: A digital video decoder system, method and article of manufacture are provided having integrated scaling capabilities for presentation of video in full size or a predetermined reduced size, while at the same time allowing for reduced external memory requirements for frame buffer storage. The integrated system utilizes an existing decimation unit to scale the decoded stream of video data when the system is in scaled video mode. Display mode switch logic oversees switching between normal video mode and scaled video mode, wherein the switching occurs without perceptual degradation of a display of the decoded stream of video data. Scaled decoded video frames are buffered in a frame buffer which is partitioned depending upon whether the digital video decoding system is in normal video mode or scaled video mode. In scaled video mode, the frame buffer accommodates both full size I and P frames, as well as scaled I, P & B frames.
    Type: Application
    Filed: September 4, 2002
    Publication date: January 2, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Francesco A. Campisano, Dennis P. Cheney, David A. Hrusecky, Chuck H. Ngai, Ronald S. Svec
  • Patent number: 6470051
    Abstract: A digital video decoder system, method and article of manufacture are provided having integrated scaling capabilities for presentation of video in full size or a predetermined reduced size, while at the same time allowing for reduced external memory requirements for frame buffer storage. The integrated system utilizes an existing decimation unit to scale the decoded stream of video data when the system is in scaled video mode. Display mode switch logic oversees switching between normal video mode and scaled video mode, wherein the switching occurs without perceptual degradation of a display of the decoded stream of video data. Scaled decoded video frames are buffered in a frame buffer which is partitioned depending upon whether the digital video decoding system is in normal video mode or scaled video mode. In scaled video mode, the frame buffer accommodates both full size I and P frames, as well as scaled I, P & B frames.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: October 22, 2002
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Dennis P. Cheney, David A. Hrusecky, Chuck H. Ngai, Ronald S. Svec