Patents by Inventor Francesco Aieta

Francesco Aieta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10408419
    Abstract: Lighting devices including metalenses are disclosed. In some embodiments, the metalenses are in the form of a hybrid multi-region collimating metalens that includes a first region and a second region, wherein the hybrid multi-region collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain sub-wavelength spaced nanostructures, such that the first region functions as a sub-wavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: September 10, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Francesco Aieta, Federico Capasso
  • Publication number: 20190265486
    Abstract: An electronic device may have a light source such as a laser light source. The light source may emit light into a waveguide. A phase grating may diffract the light that is emitted into the waveguide to produce diffracted light. The diffracted light may be oriented parallel to a surface normal of an angled edge of the waveguide and parallel to a surface normal of a microelectromechanical systems mirror element in a two-dimensional scanning microelectromechanical systems mirror that is coupled to the edge of the waveguide. A wave plate may be interposed between the mirror and the edge of the waveguide to change the polarization state of light reflected from the mirror element relative to incoming diffracted light from the phase grating. The phase grating may be configured so that the reflected light is not diffracted by the phase grating.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 29, 2019
    Inventors: Eric J. Hansotte, Byron R. Cocilovo, Se Baek Oh, Seyedeh Mahsa Kamali, Francesco Aieta
  • Publication number: 20190155105
    Abstract: A diffractive multiview backlight and a multiview display employ an array of diffractive multibeam elements including a plurality of diffraction gratings configured to provide a plurality of light beams having different principal angular directions corresponding to different view directions of the multiview display. The display includes multiview pixels that include sub-pixels. A size of the diffractive multibeam element of the array is comparable to a size of a sub-pixel in a multiview pixel of the multiview display.
    Type: Application
    Filed: June 30, 2016
    Publication date: May 23, 2019
    Inventors: Francesco Aieta, David A. Fattal
  • Publication number: 20190137075
    Abstract: Lighting devices including metalenses are disclosed. In some embodiments, the metalenses are in the form of a hybrid multi-region collimating metalens that includes a first region and a second region, wherein the hybrid multi-region collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain sub-wavelength spaced nanostructures, such that the first region functions as a sub-wavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 9, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Francesco Aieta, Federico Capasso
  • Publication number: 20190086683
    Abstract: Multi-wavelength light is directed to an optic including a substrate and achromatic metasurface optical components deposited on a surface of the substrate. The achromatic metasurface optical components comprise a pattern of dielectric resonators. The dielectric resonators have distances between adjacent dielectric resonators; and each dielectric resonator has a width, w, that is distinct from the width of other dielectric resonators. A plurality of wavelengths of interest selected from the wavelengths of the multi-wavelength light are deflected with the achromatic metasurface optical components at a shared angle or to or from a focal point at a shared focal length.
    Type: Application
    Filed: December 10, 2015
    Publication date: March 21, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: Francesco Aieta, Mikhail Kats, Patrice Genevet, Federico Capasso, Mohammadreza Khorasaninejad
  • Publication number: 20190025645
    Abstract: Examples disclosed herein include an augmented reality (AR) see-through display system, which includes a diffractive backlight substrate including diffractive gratings. The display system includes a light source to transmit light into the backlight substrate, wherein the diffractive gratings scatter the light out of the backlight substrate to form an array of directional pixels. The display system includes an LCD panel to modulate the array of directional pixels to form an image that augments a real world view visible through the backlight substrate and the LCD panel.
    Type: Application
    Filed: January 28, 2016
    Publication date: January 24, 2019
    Inventor: Francesco Aieta
  • Publication number: 20190003892
    Abstract: In one implementation, a spectral microscope may comprise a substrate with a planar lens, the planar lens including a phase profile including an axial focus and an oblique focus, a light source to excite a signal of a particle among a plurality of particles, and a detector to receive light generated from the light source from the axial focus of the planar lens and a spectral color component of the excited signal of the particle from the oblique focus of the planar lens.
    Type: Application
    Filed: August 31, 2015
    Publication date: January 3, 2019
    Applicant: Hewlett-Packard Development Company ,L.P.
    Inventors: Francesco AIETA, Charles M. SANTORI, Anita ROGACS
  • Publication number: 20180364173
    Abstract: In an example, an apparatus is described that includes a light source, a holographic optical element, a sampling apparatus, and a detector. The light source is configured to emit a beam of excitation light. The holographic optical element is arranged to convert the beam of excitation light into a plurality of beams of excitation light. The sampling apparatus is arranged to project the plurality of beams of excitation light onto a surface outside the apparatus as a two-dimensional pattern of projection points. The sampling apparatus is further arranged to collect scattered radiation emitted by the surface in response to the two-dimensional pattern of projection points. The detector detects a frequency shift in the scattered radiation.
    Type: Application
    Filed: April 18, 2016
    Publication date: December 20, 2018
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Francesco Aieta, Anita Rogacs, Viktor Shkolnikov
  • Patent number: 10132465
    Abstract: Metalenses and technologies incorporating the same are disclosed. In some embodiments, the metalenses are in the form of a hybrid multiregion collimating metalens that includes a first region and a second region, wherein the hybrid multiregion collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain subwavelength spaced nanostructures, such that the first region functions as a subwavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating. Lighting devices including such metalenses are also disclosed.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 20, 2018
    Assignees: OSRAM SYLVANIA Inc., The President and Fellows of Harvard College
    Inventors: Steve Byrnes, Francesco Aieta, Federico Capasso, Alan Lenef
  • Publication number: 20180321155
    Abstract: Optical readers are disclosed in examples herein. An example optical reader including a light source to emit a light beam; and a spot pattern generator to receive the light beam and to generate a two-dimensional spot array from the light beam, the two-dimensional spot array to be directed toward a substrate having nanostructures, the two-dimensional spot array to be sensed to detect a presence or an absence of a substance of interest on the substrate.
    Type: Application
    Filed: January 29, 2016
    Publication date: November 8, 2018
    Inventors: Charles M. SANTORI, James William STASIAK, Francesco AIETA, Anita ROGACS, Mineo YAMAKAWA, Kenneth WARD
  • Publication number: 20180274750
    Abstract: Metalenses and technologies incorporating the same are disclosed. In some embodiments, the metalenses are in the form of a hybrid multiregion collimating metalens that includes a first region and a second region, wherein the hybrid multiregion collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain subwavelength spaced nanostructures, such that the first region functions as a subwavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating. Lighting devices including such metalenses are also disclosed.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 27, 2018
    Applicants: Osram Sylvania Inc., President and Fellows of Harvard College
    Inventors: Steve Byrnes, Francesco Aieta, Federico Capasso, Alan Lenef
  • Patent number: 9939129
    Abstract: Metalenses and technologies incorporating the same are disclosed. In some embodiments, the metalenses are in the form of a hybrid multiregion collimating metalens that includes a first region and a second region, wherein the hybrid multiregion collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain subwavelength spaced nanostructures, such that the first region functions as a subwavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating. Lighting devices including such metalenses are also disclosed.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 10, 2018
    Assignees: OSRAM SYLVANIA Inc., The President and Fellows of Harvard College
    Inventors: Steve Byrnes, Francesco Aieta, Federico Capasso, Alan Lenef
  • Publication number: 20170082263
    Abstract: Metalenses and technologies incorporating the same are disclosed. In some embodiments, the metalenses are in the form of a hybrid multiregion collimating metalens that includes a first region and a second region, wherein the hybrid multiregion collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain subwavelength spaced nanostructures, such that the first region functions as a subwavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating. Lighting devices including such metalenses are also disclosed.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 23, 2017
    Applicants: Osram Sylvania Inc., President and Fellows of Harvard College
    Inventors: Steve Byrnes, Francesco Aieta, Federico Capasso, Alan Lenef
  • Patent number: 8848273
    Abstract: An optical plate includes a substrate and a resonator structure formed on or in the substrate, wherein the resonator structure is configured to produce an abrupt change in phase, amplitude and/or polarization of incident radiation.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 30, 2014
    Assignees: President and Fellows of Harvard College, Universita degli Studi di Trento
    Inventors: Nanfang Yu, Federico Capasso, Zeno Gaburro, Patrice Genevet, Mikhail Kats, Francesco Aieta
  • Publication number: 20130208332
    Abstract: An optical plate includes a substrate and a resonator structure formed on or in the substrate, wherein the resonator structure is configured to produce an abrupt change in phase, amplitude and/or polarization of incident radiation.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: President and Fellows of Harvard College
    Inventors: Nanfang Yu, Federico Capasso, Zeno Gaburro, Patrice Genevet, Mikhail Kats, Francesco Aieta