Patents by Inventor Francesco Laghezza

Francesco Laghezza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210018592
    Abstract: A mechanism is provided to determine if a short-range automotive radar detection is a direct reflection or an indirect (also known as “multipath”) reflection from a physical target object. The multipath information is further used to perform a height estimation of the object. Embodiments provide a radar system having a range resolution smaller than a path difference between the direct reflection path and the indirect reflection path. Both range separation techniques and Doppler separation techniques are utilized to provide a reliable and accurate estimation of the height of the object.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Applicant: NXP B.V.
    Inventors: Francesco Laghezza, Feike Guus Jansen
  • Publication number: 20200348389
    Abstract: Aspects of the present disclosure are directed to radar apparatuses and methods involving the communication of data with radar signals. As may be implemented with one or more embodiments, a sequence of radar waveforms are transmitted as RF signals, the RF signals carrying communication data encoded onto a ramped radar carrier signal via phase-shift keying (PSK) modulation. Such modulation may utilize a modified, reduced-angle modulation with phase angles of less than ?. Object-reflected versions of the RF signals are received and demodulated by deramping the received object-reflected versions of RF signals using a linearized version of the radar waveforms (e.g., without PSK modulation). This approach can mitigate compression peak loss.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 5, 2020
    Inventors: Francesco Laghezza, Julian Renner, Frans M.J. Willems, Semih Serbetli, Alex Alvarado
  • Publication number: 20200256948
    Abstract: Aspects of the present disclosure are directed to a method and/or apparatus involving frequency modulated continuous wave (FMCW) radar signals. As my be implemented in accordance with one or more embodiments, receiver circuitry is configured and arranged to receive a FMCW radar signal having an information signal embedded into a radar waveform, and to indicate a relationship in the FMCW radar signal between beat frequency magnitude and time delay. A filter processing circuit is configured and arranged to filter the information signal in the FMCW radar signal by applying a group delay function based on the relationship between beat frequency magnitude and time delay. Signal processing circuitry is configured and arranged to detect a remote object by using the filtered FMCW radar signal.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Inventors: Feike Guus Jansen, Francesco Laghezza, Franz Lampel
  • Publication number: 20200072941
    Abstract: A data processing device and method for detecting interference in a FMCW radar system are described. For each of a plurality of transmitted chirps of the radar system, a high pass filter is applied to a receiver signal of a receiver channel of a radar receiver during an acquisition time corresponding to a transmitted chirp to remove those parts of the receiver signal corresponding to a reflected chirp having a power at the radar receiver greater than the noise power of the radar receiver of the radar system. The receiver signal power is calculated from the high pass filtered receiver signal. The receiver signal power is compared with a threshold noise power based on an estimate of the thermal noise of the radar receiver to determine whether the receiver signal corresponds to an interfered received chirp including interference or a non-interfered received chirp not including interference.
    Type: Application
    Filed: May 15, 2019
    Publication date: March 5, 2020
    Inventors: Feike Jansen, Francesco Laghezza
  • Patent number: 10212611
    Abstract: A plurality of sub-cells are defined within a cell area of a radio communication network by the intersection of a radio paths of a plurality of directional radio antennas. The plurality of directional radio antennas are arranged to broadcast radio signals simultaneously, and to receive radio signals simultaneously. This disclosure relates to determining of signal values transmitted by or received from the plurality of directional radio antennas in a radio communication network.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: February 19, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Marzio Puleri, Antonella Bogoni, Antonio D'Errico, Francesco Laghezza, Paolo Ghelfi, Teresa Pepe, Filippo Scotti
  • Patent number: 10170832
    Abstract: A transceiver for a phased array antenna comprises a laser light source arranged to provide an optical spectrum comprising a plurality of spaced wavelengths. The transceiver further comprises a dispersion unit arranged to introduce a delay to a plurality of spectral components of the optical spectrum associated with the spaced wavelengths. The delay is dependent on the wavelength of the spectral components of the optical spectrum. The transceiver further comprises a first optical filter configured to select a plurality of spectral components received from the dispersion unit. The transceiver further comprises a first heterodyning device configured to generate a signal for transmission by the phased array antenna by heterodyning the selected spectral components associated with different ones of the spaced wavelengths of the laser light source. The transceiver is configured to receive signals from the phased array antenna.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: January 1, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Paolo Ghelfi, Antonella Bogoni, Francesco Laghezza, Daniel Onori, Filippo Scotti, Giovanni Serafino
  • Publication number: 20180091353
    Abstract: A periodic phase modulation, having a period shorter than a symbol period, is applied as a source modulation, in addition to a symbol modulation, to signals transmitted between a transmitter and a receiver in a communication network. Symbol value elements can be sent from multiple transmitters (203, 303, 603, 703) to a receiver (607, 207) in the same symbol period can be processed on the basis of the source modulation without destructive interference. In some embodiments, the symbol value elements sent by different transmitters can be combined in the receiver. In some embodiments, symbol value elements sent by different transmitters can be distinguished in the receiver.
    Type: Application
    Filed: March 12, 2015
    Publication date: March 29, 2018
    Inventors: Marzio Puleri, Antonella Bogoni, Antonio D'Errico, Francesco Laghezza, Paolo Ghelfi, Teresa Pepe, Filippo Scotti
  • Publication number: 20180049041
    Abstract: A plurality of sub-cells are defined within a cell area of a radio communication network by the intersection of a radio paths of a plurality of directional radio antennas. The plurality of directional radio antennas are arranged to broadcast radio signals simultaneously, and to receive radio signals simultaneously. This disclosure relates to determining of signal values transmitted by or received from the plurality of directional radio antennas in a radio communication network.
    Type: Application
    Filed: March 16, 2015
    Publication date: February 15, 2018
    Inventors: Marzio Puleri, Antonella Bogoni, Antonio D'Errico, Francesco Laghezza, Paolo Ghelfi, Teresa Pepe, Filippo Scotti
  • Publication number: 20170244165
    Abstract: A transceiver for a phased array antenna comprises a laser light source arranged to provide an optical spectrum comprising a plurality of spaced wavelengths. The transceiver further comprises a dispersion unit arranged to introduce a delay to a plurality of spectral components of the optical spectrum associated with the spaced wavelengths. The delay is dependent on the wavelength of the spectral components of the optical spectrum. The transceiver further comprises a first optical filter configured to select a plurality of spectral components received from the dispersion unit. The transceiver further comprises a first heterodyning device configured to generate a signal for transmission by the phased array antenna by heterodyning the selected spectral components associated with different ones of the spaced wavelengths of the laser light source. The transceiver is configured to receive signals from the phased array antenna.
    Type: Application
    Filed: August 20, 2014
    Publication date: August 24, 2017
    Inventors: Paolo GHELFI, Antonella BOGONI, Francesco LAGHEZZA, Daniel ONORI, Filippo SCOTTI, Giovanni SERAFINO
  • Publication number: 20160211578
    Abstract: A signal generator for a phased array antenna comprises a laser light source arranged to provide an optical spectrum comprising a plurality of spaced wavelengths. The signal generator further comprises a dispersion unit arranged to introduce a delay to a plurality of spectral components of the optical spectrum associated with the spaced wavelengths. The delay is dependent on the wavelength of the spectral components of the optical spectrum. The signal generator further comprises a heterodyning device configured to generate a signal for the phased array antenna by heterodyning the spectral components associated with different ones of the spaced wavelengths of the laser light source.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 21, 2016
    Inventors: Paolo GHELFI, Antonella BOGONI, Francesco LAGHEZZA, Sergio PINNA, Filippo SCOTTI, Giovanni SERAFINO
  • Publication number: 20150110494
    Abstract: An RF signal generator has an optical part for outputting optical carrier signals separated in optical frequency, and a modulator arranged to modulate the optical carrier signals with an intermediate frequency to generate sidebands. A phase modulation is applied to one or more of the sidebands or the optical carriers, without applying the phase modulation to others of the signals, and the modulator has integrated optical paths for both the phase modulated signals and for the others of the signals. A detector part carries out heterodyne detection to combine the phase modulated and other signals to output an RF signal having the phase modulation. By having integrated optical paths, the relative phase of these optical paths can be more stable than using a fiber sagnac interferometer and optical isolator thus enabling use in advanced radio communications.
    Type: Application
    Filed: February 7, 2012
    Publication date: April 23, 2015
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Paolo Ghelfi, Filippo Scotti, Francesco Laghezza, Antonella Bogoni