Patents by Inventor Francimar Schmitt

Francimar Schmitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9157151
    Abstract: The present invention generally provides an apparatus and method for eliminating the “first wafer effect” for plasma enhanced chemical vapor deposition (PECVD). One embodiment of the present invention provides a method for preparing a chamber after the chamber being idle for a period of time. The method comprises a cleaning step followed by a season step and a heating step adapted to the length of the idle time.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Ganesh Balasubramanian, Francimar Schmitt, Bok Hoen Kim
  • Publication number: 20110114177
    Abstract: A method and apparatus for forming solar cells is provided. In one embodiment, a photovoltaic device includes a first p-i-n junction cell formed on a substrate, wherein the p-i-n junction cell comprises a p-type silicon containing layer, an intrinsic type silicon containing layer formed over the p-type silicon containing layer, and a n-type silicon containing layer formed over the intrinsic type silicon containing layer, wherein the intrinsic type silicon containing layer comprises a first pair of microcrystalline layer and amorphous silicon layer.
    Type: Application
    Filed: July 19, 2010
    Publication date: May 19, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Fan Yang, Lin Zhang, Yi Zheng, Francimar Schmitt, Zheng Yuan
  • Patent number: 7611996
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Yi Zheng, Kang Sub Yim, Sang H. Ahn, Lester A. D'Cruz, Dustin W. Ho, Alexandros T. Demos, Li-Qun Xia, Derek R. Witty, Hichem M'Saad
  • Patent number: 7547643
    Abstract: Adhesion of a porous low K film to an underlying barrier layer is improved by forming an intermediate layer lower in carbon content, and richer in silicon oxide, than the overlying porous low K film. This adhesion layer can be formed utilizing one of a number of techniques, alone or in combination. In one approach, the adhesion layer can be formed by introduction of a rich oxidizing gas such as O2/CO2/etc. to oxidize Si precursors immediately prior to deposition of the low K material. In another approach, thermally labile chemicals such as alpha-terpinene, cymene, and any other non-oxygen containing organics are removed prior to low K film deposition. In yet another approach, the hardware or processing parameters, such as the manner of introduction of the non-silicon containing component, may be modified to enable formation of an oxide interface prior to low K film deposition.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Alexandros T. Demos, Derek R. Witty, Hichem M'Sadd, Sang H. Ahn, Lester A. D'Cruz, Khaled A. Elsheref, Zhenjiang Cui
  • Patent number: 7422776
    Abstract: Low K dielectric films exhibiting low mechanical stress may be formed utilizing various techniques in accordance with the present invention. In one embodiment, carbon-containing silicon oxide films are formed by plasma-assisted chemical vapor deposition at low temperatures (300° C. or less). In accordance with another embodiment, as-deposited carbon containing silicon oxide films incorporate a porogen whose subsequent liberation reduces film stress.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Lihua Li Huang, Francimar Schmitt, Li-Qun Xia
  • Publication number: 20080182403
    Abstract: Embodiments of the invention generally provide a method of forming an air gap between conductive elements of a semiconductor device, wherein the air gap has a dielectric constant of approximately 1. The air gap may generally be formed by depositing a sacrificial material between the respective conductive elements, depositing a porous layer over the conductive elements and the sacrificial material, and then stripping the sacrificial material out of the space between the respective conductive elements through the porous layer, which leaves an air gap between the respective conductive elements. The sacrificial material may be, for example, a polymerized alpha terpinene layer, the porous layer may be, for example, a porous carbon doped oxide layer, and the stripping process may utilize a UV based curing process, for example.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 31, 2008
    Inventors: ATIF NOORI, Francimar Schmitt, Annamalai Lakshmanan, Bok Hoen Kim, Reza Arghavani
  • Publication number: 20080107573
    Abstract: Ultra low K nanoporous dielectric films may be formed by chemical vapor deposition of silicon-containing components and large non-silicon containing porogens having labile groups. In accordance with one embodiment of the present invention, a low K nanoporous film may be formed by the oxidative reaction between trimethylsilane (the silicon-containing component) and alpha-terpinene (the non-silicon containing component). In accordance with certain embodiments of the present invention, the oxidant can comprise other than molecular oxygen, for example water vapor introduced in-situ or remotely, and then exposed to RF energy to generate reactive ionic species.
    Type: Application
    Filed: October 23, 2007
    Publication date: May 8, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Francimar Schmitt, Hichem M'Saad
  • Publication number: 20080105978
    Abstract: Ultra low K nanoporous dielectric films may be formed by chemical vapor deposition of silicon-containing components and large non-silicon containing porogens having labile groups. In accordance with one embodiment of the present invention, a low K nanoporous film may be formed by the oxidative reaction between trimethylsilane (the silicon-containing component) and alpha-terpinene (the non-silicon containing component). In accordance with certain embodiments of the present invention, the oxidant can comprise other than molecular oxygen, for example water vapor introduced in-situ or remotely, and then exposed to RF energy to generate reactive ionic species.
    Type: Application
    Filed: October 23, 2007
    Publication date: May 8, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Francimar Schmitt, Hichem M'Saad
  • Publication number: 20080099920
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Application
    Filed: October 22, 2007
    Publication date: May 1, 2008
    Applicant: APPLIED MATERIALS, INC. A Delaware corporation
    Inventors: Francimar Schmitt, Yi Zheng, Kang Yim, Sang Ahn, Lester D'Cruz, Dustin Ho, Alexandros Demos, Li-Qun Xia, Derek Witty, Hichem M'Saad
  • Publication number: 20080050932
    Abstract: The present invention generally provides an apparatus and method for reducing defects on films deposited on semiconductor substrates. One embodiment of the present invention provides a method for depositing a film on a substrate. The method comprises treating the substrate with a first plasma configured to reduce pre-existing defects on the substrate, and depositing a film comprising silicon and carbon on the substrate by applying a second plasma generated from at least one precursor and at least one reactant gas.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Inventors: Annamalai Lakshmanan, Vu NT Nguyen, Sohyun Park, Ganesh Balasubramanian, Steven Reiter, Tsutomu Kiyohara, Francimar Schmitt, Bok Hoen Kim
  • Publication number: 20080044594
    Abstract: A method for depositing a low dielectric constant film having a dielectric constant of about 3.2 or less, preferably about 3.0 or less, includes providing a cyclic organosiloxane and a linear hydrocarbon compound having at least one unsaturated carbon-carbon bond to a substrate surface. In one aspect, the cyclic organosiloxane and the linear hydrocarbon compound are reacted at conditions sufficient to deposit a low dielectric constant film on the semiconductor substrate. Preferably, the low dielectric constant film has compressive stress.
    Type: Application
    Filed: October 23, 2007
    Publication date: February 21, 2008
    Inventors: Francimar Schmitt, Hichem M'saad
  • Publication number: 20080042077
    Abstract: Methods and apparatus are provided for processing a substrate with an ultraviolet curing process. In one aspect, the invention provides a method for processing a substrate including depositing a silicon carbide dielectric layer on a substrate surface and curing the silicon carbide dielectric layer with ultra-violet curing radiation. The silicon carbide dielectric layer may comprise a nitrogen containing silicon carbide layer, an oxygen containing silicon carbide layer, or a phenyl containing silicon carbide layer. The silicon carbide dielectric layer may be used as a barrier layer, an etch stop, or as an anti-reflective coating in a damascene formation technique.
    Type: Application
    Filed: October 24, 2007
    Publication date: February 21, 2008
    Inventor: FRANCIMAR SCHMITT
  • Publication number: 20070281083
    Abstract: The present invention generally provides an apparatus and method for eliminating the “first wafer effect” for plasma enhanced chemical vapor deposition (PECVD). One embodiment of the present invention provides a method for preparing a chamber after the chamber being idle for a period of time. The method comprises a cleaning step followed by a season step and a heating step adapted to the length of the idle time.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 6, 2007
    Inventors: ANNAMALAI LAKSHMANAN, Ganesh Balasubramanian, Francimar Schmitt, Bok Hoen Kim
  • Patent number: 7273823
    Abstract: A method of processing a substrate including depositing a low dielectric constant film comprising silicon, carbon, and oxygen on the substrate and depositing an oxide rich cap on the low dielectric constant film is provided. The low dielectric constant film is deposited in the presence of low frequency RF power from a gas mixture including an organosilicon compound and an oxidizing gas. The low frequency RF power is terminated after the deposition of the low dielectric constant film. The oxide rich cap is deposited on the low dielectric constant film in the absence of low frequency RF power from another gas mixture including the organosilicon compound and the oxidizing gas used to deposit the low dielectric constant film.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 25, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Annamalai Lakshmanan, Daemian Raj, Francimar Schmitt, Bok Hoen Kim, Ganesh Balasubramanian
  • Patent number: 7259111
    Abstract: A method of depositing a organosilicate dielectric layer exhibiting high adhesion strength to an underlying substrate disposed within a single processing chamber without plasma arcing. The method includes positioning a substrate within a processing chamber having a powered electrode, flowing an interface gas mixture into the processing chamber, the interface gas mixture comprising one or more organosilicon compounds and one or more oxidizing gases, depositing a silicon oxide layer on the substrate by varying process conditions, wherein DC bias of the powered electrode varies less than 60 volts.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: August 21, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Ganesh Balasubramanian, Annamalai Lakshmanan, Zhenjiang Cui, Juan Carlos Rocha-Alvarez, Bok Hoen Kim, Hichem M'Saad, Steven Reiter, Francimar Schmitt
  • Publication number: 20070141855
    Abstract: Methods are provided for processing a substrate for depositing an adhesion layer having a low dielectric constant between two low k dielectric layers. In one aspect, the invention provides a method for processing a substrate including depositing a barrier layer on the substrate, wherein the barrier layer comprises silicon and carbon and has a dielectric constant less than 4, depositing a dielectric initiation layer adjacent the barrier layer, and depositing a first dielectric layer adjacent the dielectric initiation layer, wherein the dielectric layer comprises silicon, oxygen, and carbon and has a dielectric constant of about 3 or less.
    Type: Application
    Filed: February 26, 2007
    Publication date: June 21, 2007
    Inventors: Francimar Schmitt, Li-Qun Xia, Son Nguyen, Shankar Venkataraman
  • Patent number: 7189658
    Abstract: A method of processing a substrate including depositing a transition layer and a dielectric layer on a substrate in a processing chamber are provided. The transition layer is deposited from a processing gas including an organosilicon compound and an oxidizing gas. The flow rate of the organosilicon compound is ramped up during the deposition of the transition layer such that the transition layer has a carbon concentration gradient and an oxygen concentration gradient. The transition layer improves the adhesion of the dielectric layer to an underlying barrier layer on the substrate.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: March 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Annamalai Lakshmanan, Deenesh Padhi, Ganesh Balasubramanian, Zhenjiang David Cui, Daemian Raj, Juan Carlos Rocha-Alvarez, Francimar Schmitt, Bok Hoen Kim
  • Publication number: 20060276054
    Abstract: A method of processing a substrate including depositing a low dielectric constant film comprising silicon, carbon, and oxygen on the substrate and depositing an oxide rich cap on the low dielectric constant film is provided. The low dielectric constant film is deposited in the presence of low frequency RF power from a gas mixture including an organosilicon compound and an oxidizing gas. The low frequency RF power is terminated after the deposition of the low dielectric constant film. The oxide rich cap is deposited on the low dielectric constant film in the absence of low frequency RF power from another gas mixture including the organosilicon compound and the oxidizing gas used to deposit the low dielectric constant film.
    Type: Application
    Filed: June 3, 2005
    Publication date: December 7, 2006
    Inventors: Annamalai Lakshmanan, Daemian Raj, Francimar Schmitt, Bok Kim, Ganesh Balasubramanian
  • Publication number: 20060252273
    Abstract: A method of processing a substrate including depositing a transition layer and a dielectric layer on a substrate in a processing chamber are provided. The transition layer is deposited from a processing gas including an organosilicon compound and an oxidizing gas. The flow rate of the organosilicon compound is ramped up during the deposition of the transition layer such that the transition layer has a carbon concentration gradient and an oxygen concentration gradient. The transition layer improves the adhesion of the dielectric layer to an underlying barrier layer on the substrate.
    Type: Application
    Filed: May 4, 2005
    Publication date: November 9, 2006
    Inventors: Annamalai Lakshmanan, Deenesh Padhi, Ganesh Balasubramanian, Zhenjiang Cui, Daemian Raj, Juan Rocha-Alvarez, Francimar Schmitt, Bok Kim
  • Publication number: 20060160376
    Abstract: A method of depositing a organosilicate dielectric layer exhibiting high adhesion strength to an underlying substrate disposed within a single processing chamber without plasma arcing. The method includes positioning a substrate within a processing chamber having a powered electrode, flowing an interface gas mixture into the processing chamber, the interface gas mixture comprising one or more organosilicon compounds and one or more oxidizing gases, depositing a silicon oxide layer on the substrate by varying process conditions, wherein DC bias of the powered electrode varies less than 60 volts.
    Type: Application
    Filed: June 1, 2005
    Publication date: July 20, 2006
    Inventors: Deenesh Padhi, Ganesh Balasubramanian, Annamalai Lakshmanan, Zhenjiang Cui, Juan Rocha-Alvarez, Bok Kim, Hichem M'Saad, Steven Reiter, Francimar Schmitt