Patents by Inventor Francis C. Szoka
Francis C. Szoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240424007Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: August 1, 2024Publication date: December 26, 2024Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka
-
Patent number: 12070471Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: GrantFiled: February 17, 2023Date of Patent: August 27, 2024Assignee: CELATOR PHARMACEUTICALS, INC.Inventors: Mark E Hayes, Charles O. Noble, Francis C. Szoka
-
Publication number: 20230390317Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: February 17, 2023Publication date: December 7, 2023Inventors: Mark E. HAYES, Charles O. NOBEL, Francis C. SZOKA
-
Patent number: 11583544Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: GrantFiled: December 24, 2019Date of Patent: February 21, 2023Assignee: CELATOR PHARMACEUTICALS, INC.Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka
-
Publication number: 20220017882Abstract: The disclosure provides compositions and methods for modifying a target nucleic acid. In some embodiments, a composition can include a targetable nuclease, a DNA-binding protein, and a donor template comprising a homology directed repair (HDR) template and one or more DNA-binding protein target sequences. In some embodiments, a composition can include a Cas protein, one or more single guide RNAs (sgRNAs), and an anionic polymer.Type: ApplicationFiled: December 12, 2019Publication date: January 20, 2022Inventors: Alexander Marson, Theodore Lee Roth, Daniel Goodman, David-Huy Nhu Nguyen, Francis C. Szoka
-
Publication number: 20210008091Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: December 24, 2019Publication date: January 14, 2021Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA
-
Patent number: 10722467Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: GrantFiled: June 27, 2019Date of Patent: July 28, 2020Assignee: ZONEONE PHARMA, INC.Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
-
Patent number: 10507182Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: GrantFiled: September 10, 2018Date of Patent: December 17, 2019Assignee: ZONEONE PHARMA, INC.Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
-
Publication number: 20190314282Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: June 27, 2019Publication date: October 17, 2019Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
-
Patent number: 10369229Abstract: The present invention relates to liposomal vaccine compositions, methods for the manufacture thereof, and methods for the use thereof to stimulate an immune response in an animal. These compositions comprise dimyristoylphosphatidylcholine (“DMPC”); either dimyristoylphosphatidylglycerol (“DMPG”) or dimyristoyltrimethylammonium propane (“DMTAP”) or both DMPC and DMTAP; and at least one sterol derivative providing a covalent anchor for one or more immunogenic polypeptide(s) or carbohydrate(s).Type: GrantFiled: April 2, 2018Date of Patent: August 6, 2019Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, MOLECULAR EXPRESS, INC.Inventors: Gary Fujii, Francis C. Szoka, Douglas S. Watson
-
Publication number: 20190110991Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: September 10, 2018Publication date: April 18, 2019Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
-
Publication number: 20190105339Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: May 4, 2018Publication date: April 11, 2019Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA
-
Publication number: 20180280534Abstract: The present invention relates to liposomal vaccine compositions, methods for the manufacture thereof, and methods for the use thereof to stimulate an immune response in an animal. These compositions comprise dimyristoylphosphatidylcholine (“DMPC”); either dimyristoylphosphatidylglycerol (“DMPG”) or dimyristoyltrimethylammonium propane (“DMTAP”) or both DMPC and DMTAP; and at least one sterol derivative providing a covalent anchor for one or more immunogenic polypeptide(s) or carbohydrate(s).Type: ApplicationFiled: April 2, 2018Publication date: October 4, 2018Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, MOLECULAR EXPRESS, INC.Inventors: Gary FUJII, Francis C. SZOKA, Douglas S. WATSON
-
Patent number: 10004759Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL). In the preferred embodiment the drug in the solubilizing agent is mixed with the liposomes in aqueous suspension so that the concentration of solubilizing agent is lowered to below its capacity to completely solubilize the drug. This results in the drug precipitating but remote loading is capability retained.Type: GrantFiled: August 4, 2015Date of Patent: June 26, 2018Assignee: ZONEONE PHARMA, INC.Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
-
Patent number: 9931419Abstract: The present invention relates to liposomal vaccine compositions, methods for the manufacture thereof, and methods for the use thereof to stimulate an immune response in an animal. These compositions comprise dimyristoylphosphatidylcholine (“DMPC”); either dimyristoylphosphatidylglycerol (“DMPG”) or dimyristoyltrimethylammonium propane (“DMTAP”) or both DMPC and DMTAP; and at least one sterol derivative providing a covalent anchor for one or more immunogenic polypeptide(s) or carbohydrate(s).Type: GrantFiled: June 13, 2016Date of Patent: April 3, 2018Assignees: MOLECULAR EXPRESS, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Gary Fujii, Francis C. Szoka, Jr., Douglas S. Watson
-
Publication number: 20170239182Abstract: The present invention provides liposomes loaded with chelating agents, pharmaceutical formulations including these liposomes and methods of making chelating agent liposomes. Because the chelating agents are loaded in the liposome with high efficiencies, the liposomes are of use in treatment of metal ion overload in subjects. The liposomes can also contain essential trace metals to compensate for the off target effect of removal of endogenous non-target trace metals by administration of the chelator. The liposomes can include two or more different chelating agents of different structures and affinities for metal ions.Type: ApplicationFiled: August 12, 2015Publication date: August 24, 2017Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
-
Patent number: 9737485Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: GrantFiled: July 21, 2016Date of Patent: August 22, 2017Assignee: ZONEONE PHARMA, INC.Inventors: Mark E. Hayes, Charles O. Noble, Francis C. Szoka, Jr.
-
Publication number: 20170231910Abstract: The present invention provides liposomes loaded with chelating agents, pharmaceutical formulations including these liposomes and methods of making chelating agent liposomes. Because the chelating agents are loaded in the liposome with high efficiencies, the liposomes are of use in treatment of metal ion overload in subjects. The liposomes can also contain essential trace metals to compensate for the off target effect of removal of endogenous non-target trace metals by administration of the chelator. The liposomes can include two or more different chelating agents of different structures and affinities for metal ions.Type: ApplicationFiled: August 12, 2015Publication date: August 17, 2017Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.
-
Publication number: 20170224715Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL). In the preferred embodiment the drug in the solubilizing agent is mixed with the liposomes in aqueous suspension so that the concentration of solubilizing agent is lowered to below its capacity to completely solubilize the drug. This results in the drug precipitating but remote loading is capability retained.Type: ApplicationFiled: August 4, 2015Publication date: August 10, 2017Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA
-
Publication number: 20170202776Abstract: The present invention provides liposome compositions containing sparingly soluble drugs that are used to treat life-threatening diseases. A preferred method of encapsulating a drug inside a liposome is by remote or active loading. Remote loading of a drug into liposomes containing a transmembrane electrochemical gradient is initiated by co-mixing a liposome suspension with a solution of drug, whereby the neutral form of the compound freely enters the liposome and becomes electrostatically charged thereby preventing the reverse transfer out of the liposome. There is a continuous build-up of compound within the liposome interior until the electrochemical gradient is dissipated or all the drug is encapsulated in the liposome. However, this process as described in the literature has been limited to drugs that are freely soluble in aqueous solution or solubilized as a water-soluble complex. This invention describes compositions and methods for remote loading drugs with low water solubility (<2 mg/mL).Type: ApplicationFiled: February 9, 2017Publication date: July 20, 2017Inventors: Mark E. HAYES, Charles O. NOBLE, Francis C. SZOKA, JR.