Patents by Inventor Francis Celii

Francis Celii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7572733
    Abstract: Gas switching is used during an etch process to modulate the characteristics of the etch. The etch process comprises a sequence of at least three steps, wherein the sequence is repeated at least once. For example, the first step may result in a high etch rate of oxide (108) while the second step is a polymer coating steps and the third step results in a low etch rate of oxide and high etch rate of another material (114) and/or sputtering.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Ping Jiang, Francis Celii
  • Patent number: 7361599
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Publication number: 20080090423
    Abstract: Gas switching is used during an etch process to modulate the characteristics of the etch. The etch process comprises a sequence of at least three steps, wherein the sequence is repeated at least once. For example, the first step may result in a high etch rate of oxide (108) while the second step is a polymer coating steps and the third step results in a low etch rate of oxide and high etch rate of another material (114) and/or sputtering.
    Type: Application
    Filed: October 25, 2007
    Publication date: April 17, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Ping Jiang, Francis Celii
  • Publication number: 20070275561
    Abstract: Gas switching is used during an etch process to modulate the characteristics of the etch. The etch process comprises a sequence of at least three steps, wherein the sequence is repeated at least once. For example, the first step may result in a high etch rate of oxide (108) while the second step is a polymer coating steps and the third step results in a low etch rate of oxide and high etch rate of another material (114) and/or sputtering.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 29, 2007
    Inventors: Ping Jiang, Francis Celii
  • Patent number: 7300878
    Abstract: Gas switching is used during an etch process to modulate the characteristics of the etch. The etch process comprises a sequence of at least three steps, wherein the sequence is repeated at least once. For example, the first step may result in a high etch rate of oxide (108) while the second step is a polymer coating steps and the third step results in a low etch rate of oxide and high etch rate of another material (114) and/or sputtering.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: November 27, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Ping Jiang, Francis Celii
  • Publication number: 20070221974
    Abstract: A ferroelectric memory capacitor is formed by forming a barrier layer, a first metal layer, a ferroelectric layer, a second metal layer, and a hard mask layer, on dielectric layer (70). Using the patterned hard mask layer (255), the layers are etched to form an etched barrier layer (205), and etched first metal layer (215), and etched ferroelectric layer (225), and etched second metal layers (235, 245). The etched layers form a ferroelectric memory capacitor (270) with sidewalls that form an angle with the plane of the upper surface of the dielectric layer (70) between 78° and 88°. The processes used to etch the layers are plasma processes performed at temperatures between 200° C. and 500° C.
    Type: Application
    Filed: May 31, 2007
    Publication date: September 27, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Francis Celii, Mahesh Thakre, Scott Summerfelt
  • Publication number: 20070119813
    Abstract: A method of patterning a polysilicon feature includes forming a hard mask layer over a polysilicon layer, wherein the hard mask layer includes a silicon rich silicon oxynitride layer, and a silicon oxynitride layer or bottom anti-reflective coating (BARC) layer overlying the silicon rich silicon oxynitride layer. The method further includes forming a photoresist layer over the hard mask layer, selectively exposing the photoresist layer with 193 nm ultraviolet radiation, and developing the exposed photoresist, thereby defining a photoresist feature. The hard mask layer is then patterned using the photoresist feature as an etch mask, and the polysilicon layer is patterned using the patterned hard mask as an etch mask.
    Type: Application
    Filed: November 28, 2005
    Publication date: May 31, 2007
    Inventors: Francis Celii, Kenneth Hewes, Sandra Zheng
  • Publication number: 20060186406
    Abstract: A method of manufacturing a semiconductor device by qualifying an etch process. A semiconductor substrate is subjected to a predefined etch process to produce a partially-etched film. A scatterometry signature of the partially-etched film is produced. The scatterometry signature is used to determine if a physical property of the partially-etched film matches a target result.
    Type: Application
    Filed: February 15, 2006
    Publication date: August 24, 2006
    Applicant: Texas Instruments Inc.
    Inventors: Scott Bushman, Francis Celii
  • Publication number: 20060046498
    Abstract: A method of forming a gate electrode (24?) for a metal-oxide-semiconductor (MOS) integrated circuit is disclosed. A hardmask layer (26), for example formed of silicon-rich nitride, is deposited over a polysilicon layer (24) from which the gate electrode (24?) is to be formed. An anti-reflective coating, or bottom anti-reflective coating or BARC, layer (29) is then formed over the hardmask layer (26), and photoresist (30) is photolithographically patterned to define the pattern of the gate electrode (24?), although to a wider, photolithographic, width (LW). The pattern is transferred from the photoresist (30) to the BARC layer (29). The remaining elements of the BARC layer (29) are then trimmed, preferably by a timed isotropic etch, to a sub-lithographic width (SW). This pattern is then transferred to the hardmask layer (26) by an anisotropic etch of that layer, using the trimmed BARC elements (29) as a mask.
    Type: Application
    Filed: August 31, 2004
    Publication date: March 2, 2006
    Applicant: Texas Instruments Incorporated
    Inventors: Francis Celii, Brian Smith, James Blatchford, Robert Kraft
  • Publication number: 20050227378
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Application
    Filed: June 6, 2005
    Publication date: October 13, 2005
    Inventors: Theodore Moise, Guoqiang Xing, Mark Visokay, Justin Gaynor, Stephen Gilbert, Francis Celii, Scott Summerfelt, Luigi Colombo
  • Patent number: 6902939
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: June 7, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Publication number: 20050112898
    Abstract: The present invention provides a method for etching a substrate, a method for forming an integrated circuit, an integrated circuit formed using the method, and an integrated circuit. The method for etching a substrate includes, among other steps, providing a substrate 140 having an aluminum oxide etch stop layer 130 located thereunder, and then etching an opening 150, 155, in the substrate 140 using an etchant comprising carbon oxide, a fluorocarbon, an etch rate modulator, and an inert carrier gas, wherein a flow rate of the carbon oxide is greater than about 80 sccm and the etchant is selective to the aluminum oxide etch stop layer 130. The aluminum oxide etch stop layer may also be used in the back-end of advanced CMOS processes as a via etch stop layer.
    Type: Application
    Filed: November 25, 2003
    Publication date: May 26, 2005
    Applicant: Texas Instruments, Incorporated
    Inventors: K.R. Udayakumar, Ted Moise, Scott Summerfelt, Martin Albrecht, William Dostalik, Francis Celii
  • Publication number: 20050054122
    Abstract: The present invention is directed to a method of forming an FeRAM integrated circuit, which includes performing a capacitor stack etch to define the FeRAM capacitor. The method comprises etching a PZT ferroelectric layer with a high temperature BCl3 etch which provides substantial selectivity with respect to the hard mask. Alternatively, the PZT ferroelectric layer is etch using a low temperature fluorine component etch chemistry such as CHF3 to provide a non-vertical PZT sidewall profile. Such a profile prevents conductive material associated with a subsequent bottom electrode layer etch from depositing on the PZT sidewall, thereby preventing leakage or a “shorting out” of the resulting FeRAM capacitor.
    Type: Application
    Filed: October 19, 2004
    Publication date: March 10, 2005
    Inventors: Francis Celii, Scott Summerfelt, Mahesh Thakre
  • Publication number: 20030068846
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Application
    Filed: August 19, 2002
    Publication date: April 10, 2003
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Patent number: 6444542
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: September 3, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Publication number: 20010055852
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Application
    Filed: April 3, 2001
    Publication date: December 27, 2001
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Patent number: 6211035
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: April 3, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo