Patents by Inventor Francis J. Calabresi

Francis J. Calabresi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9479255
    Abstract: An optical network terminal is provided for use in a passive optical network (PON). The optical network terminal includes a data port for receiving data packets from an external device and a processor for converting the data packets to data link frames. In addition, the optical network terminal includes a memory configured to store a time division multiplexing scheme identifying a time slot assigned to each of a plurality of network nodes in the PON for transmission of upstream optical signals. An optical transceiver is provided for converting the data link frames to upstream optical signals and transmitting the optical signals on an upstream TDMA (time division, multiple access) channel to an Optical Line Terminal (OLT). The optical transceiver includes a burst mode laser diode for generating the optical signals and a burst mode laser driver for biasing the laser diode with a bias signal and a modulation bias signal. The laser driver includes a dual closed loop feedback control circuit.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: October 25, 2016
    Assignee: ARRIS Enterprises, Inc.
    Inventors: David B. Bowler, James M. Aufiero, Francis J. Calabresi, Christopher J. Pekalsky
  • Patent number: 8139957
    Abstract: An optical receiver includes a light receiving element for converting an optical signal to an electrical signal having a first bandwidth and an amplifier for amplifying the electrical signal. The amplifier has a first gain response that yields a second bandwidth that is less than the first bandwidth. The optical receiver also includes an equalizing circuit operationally coupled to the amplifier. The equalizing circuit has a second gain response that compensates for the first gain response of the amplifier so that a substantially constant net gain is imparted by the amplifier and the equalizing circuit to the electrical signal over the first bandwidth.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 20, 2012
    Assignee: General Instrument Corporation
    Inventors: David B. Bowler, Francis J. Calabresi, Jason G. Luk
  • Publication number: 20090315626
    Abstract: An optical receiver includes a light receiving element for converting an optical signal to an electrical signal having a first bandwidth and an amplifier for amplifying the electrical signal. The amplifier has a first gain response that yields a second bandwidth that is less than the first bandwidth. The optical receiver also includes an equalizing circuit operationally coupled to the amplifier. The equalizing circuit has a second gain response that compensates for the first gain response of the amplifier so that a substantially constant net gain is imparted by the amplifier and the equalizing circuit to the electrical signal over the first bandwidth.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Applicant: General Instrument Corporation
    Inventors: David B. Bowler, Francis J. Calabresi, Jason G. Luk
  • Publication number: 20090310961
    Abstract: A method is provided to calibrate a monitor photodiode that measures the optical output power generated by an optoelectronic transceiver module that includes a burst mode laser diode. The method includes disabling the power control loop that controls an average optical output power generated by the laser diode during a laser burst. A series of logic zero signals is applied to a data input of the transceiver module and the logic zero level of the optical signal generated by the burst mode laser diode while applying the series of logic zero signals is measured. The logic zero bias level applied to the laser diode is adjusted until the measured logic zero level of the optical signal reaches a first desired value. While maintaining the optical signal at the first desired value, a first value of a current generated by the monitor photodiode in response to optical energy received from a back facet of the laser diode is stored.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 17, 2009
    Applicant: GENERAL INSTRUMENT CORPORATION
    Inventors: David B. Bowler, James M. Aufiero, Francis J. Calabresi, Christopher J. Pekalsky, Jason G. Luk
  • Publication number: 20090274471
    Abstract: An optical network terminal is provided for use in a passive optical network (PON). The optical network terminal includes a data port for receiving data packets from an external device and a processor for converting the data packets to data link frames. In addition, the optical network terminal includes a memory configured to store a time division multiplexing scheme identifying a time slot assigned to each of a plurality of network nodes in the PON for transmission of upstream optical signals. An optical transceiver is provided for converting the data link frames to upstream optical signals and transmitting the optical signals on an upstream TDMA (time division, multiple access) channel to an Optical Line Terminal (OLT). The optical transceiver includes a burst mode laser diode for generating the optical signals and a burst mode laser driver for biasing the laser diode with a bias signal and a modulation bias signal. The laser driver includes a dual closed loop feedback control circuit.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Applicant: GENERAL INSTRUMENT CORPORATION
    Inventors: David B. Bowler, James M. Aufiero, Francis J. Calabresi, Christopher J. Pekalsky