Patents by Inventor Francis J. Kub

Francis J. Kub has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9679766
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: June 13, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr., Nelson Garces
  • Publication number: 20170125557
    Abstract: A method of making a graphene base transistor with reduced collector area comprising forming an electron injection region, forming an electron collection region, and forming a base region wherein the base region comprises one or more sheets of graphene and wherein the base region is intermediate the electron injection region and the electron collection region and forms electrical interfaces therewith.
    Type: Application
    Filed: January 18, 2017
    Publication date: May 4, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Andrew D. Koehler
  • Publication number: 20170073276
    Abstract: A method for making transparent nanocomposite ceramics and other solid bulk materials from nanoparticle powders and transparent nanocomposite ceramics and other solid bulk materials formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated to produce a clean surface powder. The clean surface powder is coated with a second material by means of p-ALD to produce core/shell or core multi shell nanoparticles having a coating or coatings of a other material surrounding the nanoparticle. The core/shell nanoparticles are cleaned and formed into green compact which is sintered to produce a transparent nanocomposite ceramic or other solid bulk material consisting of nanoparticles or core/shell nanoparticles uniformly embedded in a matrix of a different material, particularly in a matrix of a different ceramic material, formed by outer shell of initial core/shell. All steps are performed without exposing the material to the ambient.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 16, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar, Francis J. Kub
  • Patent number: 9590081
    Abstract: A method of making a graphene base transistor with reduced collector area comprising forming a graphene material layer, forming a collector material, depositing a dielectric, planarizing the dielectric, cleaning and removing the native oxide, transferring a base graphene material layer to the top surface of the graphene material layer, bonding the base graphene material layer, and photostepping and defining a second graphene material layer. A method of making a graphene base transistor with reduced collector area comprising forming an electron injection region, forming an electron collection region, and forming a base region. A graphene base transistor with reduced collector area comprising an electron emitter region, an electron collection region, and a base region.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: March 7, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Andrew D. Koehler
  • Patent number: 9543168
    Abstract: A symmetric multicycle rapid thermal annealing (SMRTA) method for annealing a semiconductor material without the material decomposing. The SMRTA method includes a first long-time annealing at a first temperature at which the material is thermodynamically stable, followed by multicycle rapid thermal annealing (MRTA) at temperatures at which the material is not thermodynamically stable, followed in turn by a second long-time annealing at a second temperature at which the material is thermodynamically stable. The SMRTA method can be used to form p-type and n-type semiconductor regions in doped III-nitride semiconductors, SiC, and diamond.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: January 10, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jordan Greenlee, Travis J. Anderson, Francis J. Kub
  • Publication number: 20160341552
    Abstract: According to one aspect, embodiments herein provide a gyroscope comprising an axially symmetric structure, and a plurality of transducers, each configured to perform at least one of driving and sensing motion of the axially symmetric structure, wherein the plurality of transducers is configured to drive the axially symmetric structure in at least a first vibratory mode and a second vibratory mode, and wherein the gyroscope is implemented on a hexagonal crystal-based substrate.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Francis J. Kub, Karl D. Hobart, Eugene Imhoff, Rachael Myers-Ward, Eugene H. Cook, Marc S. Weinberg, Jonathan J. Bernstein
  • Publication number: 20160336171
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 17, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, JR., Nelson Garces
  • Patent number: 9490356
    Abstract: Methods for forming a high-quality III-nitride passivation layer on an AlGaN/GaN HEMT. A III-nitride passivation layer is formed on the surface of an AlGaN/GaN HEMT by means of atomic layer epitaxy (ALE), either before or after deposition of a gate metal electrode on the AlGaN barrier layer. Depending on the gate metal and/or the passivation material used, the III-nitride passivation layer can be formed by ALE at temperatures between about 300° C. and about 85020 C. In a specific embodiment, the III-nitride passivation layer can be an AlN layer formed by ALE at about 550° C. after deposition of a Schottky metal gate electrode. The III-nitride passivation layer can be grown so as to conformally cover the entire device, providing a hermetic seal that protects the against environmental conditions.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: November 8, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Andrew D. Koehler, Travis J. Anderson, Karl D. Hobart, Francis J. Kub
  • Publication number: 20160233108
    Abstract: A symmetric multicycle rapid thermal annealing (SMRTA) method for annealing a semiconductor material without the material decomposing. The SMRTA method includes a first long-time annealing at a first temperature at which the material is thermodynamically stable, followed by multicycle rapid thermal annealing (MRTA) at temperatures at which the material is not thermodynamically stable, followed in turn by a second long-time annealing at a second temperature at which the material is thermodynamically stable. The SMRTA method can be used to form p-type and n-type semiconductor regions in doped III-nitride semiconductors, SiC, and diamond.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 11, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jordan Greenlee, Travis J. Anderson, Francis J. Kub
  • Patent number: 9396941
    Abstract: Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 19, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr., Nelson Garces
  • Publication number: 20160204222
    Abstract: Methods for forming a high-quality III-nitride passivation layer on an AlGaN/GaN HEMT. A III-nitride passivation layer is formed on the surface of an AlGaN/GaN HEMT by means of atomic layer epitaxy (ALE), either before or after deposition of a gate metal electrode on the AlGaN barrier layer. Depending on the gate metal and/or the passivation material used, the III-nitride passivation layer can be formed by ALE at temperatures between about 300° C. and about 85020 C. In a specific embodiment, the III-nitride passivation layer can be an AlN layer formed by ALE at about 550° C. after deposition of a Schottky metal gate electrode. The III-nitride passivation layer can be grown so as to conformally cover the entire device, providing a hermetic seal that protects the against environmental conditions.
    Type: Application
    Filed: March 25, 2016
    Publication date: July 14, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Andrew D. Koehler, Travis J. Anderson, Karl D. Hobart, Francis J. Kub
  • Publication number: 20160120472
    Abstract: An implantable device includes a circuit protected with a low dissolution rate layer, wherein the circuit is either (a) fully encapsulated by the low dissolution rate layer and configured for non-electrical conduction contact sensing (e.g., capacitive sensing) or (b) partially encapsulated by the low dissolution rate layer with an electrode at least partially exposed outside the layer; wherein the implantable device is suitable for implantation inside the body of a living animal; and wherein the low dissolution rate layer comprises an element selected from the group consisting of gallium, boron, nitrogen, oxygen, zirconium, aluminum, and titanium. Such devices can be made by lithographic and other means, with coating layers applied by atomic layer deposition.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 5, 2016
    Inventors: Francis J. Kub, Charles R. Eddy, JR., Virginia D. Wheeler
  • Patent number: 9327982
    Abstract: Methods of forming a graphene material on a surface are presented. A metal material is disposed on a material substrate or material layer and is infused with carbon, for example, by exposing the metal to a carbon-containing vapor. The carbon-containing metal material is annealed to cause graphene to precipitate onto the bottom of the metal material to form a graphene layer between the metal material and the material substrate/material layer and also onto the top and/or sides of the metal material. Graphene material is removed from the top and sides of the metal material and then the metal material is removed, leaving only the graphene layer that was formed on the bottom of the metal material. In some cases graphene material that formed on one or more side of the sides of the metal material is not removed so that a vertical graphene material layer is formed.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: May 3, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis Anderson, Boris N. Feygelson
  • Publication number: 20160087087
    Abstract: A method of making a graphene base transistor with reduced collector area comprising forming a graphene material layer, forming a collector material, depositing a dielectric, planarizing the dielectric, cleaning and removing the native oxide, transferring a base graphene material layer to the top surface of the graphene material layer, bonding the base graphene material layer, and photostepping and defining a second graphene material layer. A method of making a graphene base transistor with reduced collector area comprising forming an electron injection region, forming an electron collection region, and forming a base region. A graphene base transistor with reduced collector area comprising an electron emitter region, an electron collection region, and a base region.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 24, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Andrew D. Koehler
  • Patent number: 9275998
    Abstract: An inverted P-channel III-nitride field effect transistor with hole carriers in the channel comprising a gallium-polar III-Nitride grown epitaxially on a substrate, a barrier, a two-dimensional hole gas in the barrier layer material at the heterointerface of the first material, and wherein the gallium-polar III-Nitride material comprises III-Nitride epitaxial material layers grown in such a manner that when GaN is epitaxially grown the top surface of the epitaxial layer is gallium-polar. A method of making a P-channel III-nitride field effect transistor with hole carriers in the channel comprising selecting a face of a substrate so that the gallium-polar (0001) face is the dominant face for growth of III-Nitride epitaxial layer growth material, growing a GaN epitaxial layer, doping, growing a barrier, etching, forming a contact, performing device isolation, defining a gate opening, defining gate metal, making a contact window, and depositing and defining a thick metal.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: March 1, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Andrew D. Koehler, Karl D. Hobart
  • Patent number: 9246305
    Abstract: A light-emitting device having one or more diamond layers integrated therein and methods for forming a light-emitting device with integrated diamond layers. The diamond is grown either directly on the semiconductor material comprising the light-emitting structure, on a nucleation layer deposited on the semiconductor material, or on a dielectric layer deposited on the semiconductor material before growth of the diamond layer. The device can include a trench or thermal shunt formed in the substrate on the backside of the device, or can include a heat sink to provide additional thermal management.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: January 26, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Karl D. Hobart
  • Patent number: 9236432
    Abstract: A graphene base transistor with reduced collector area comprising an electron injection region, an electron collection region, and a base region wherein the base region comprises one or more sheets of graphene and wherein the base region is intermediate the electron injection region and the electron collection region and forms electrical interfaces therewith. A method of making a graphene base transistor with reduced collector area comprising forming an electron injection region, forming an electron collection region, and forming a base region wherein the base region comprises one or more sheets of graphene and wherein the base region is intermediate the electron injection region and the electron collection region and forms electrical interfaces therewith.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: January 12, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Andrew D. Koehler
  • Publication number: 20150362763
    Abstract: A smart window comprising a transparent substrate, a transparent low emittance layer on the transparent substrate, a variable emittance material layer on the substrate or transparent low emittance layer, and a protection material layer on the variable emittance material layer.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 17, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Virginia D. Wheeler, Francis J. Kub, Charles R. Eddy, JR., Marko J. Tadjer
  • Publication number: 20150362374
    Abstract: This disclosure describes a microbolometer sensor element and microbolometer array imaging devices optimized for infrared radiation detection that are enabled using atomic layer deposition (ALD) of vanadium oxide material layer (VOx) for a temperature sensitive resistor.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 17, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Virginia D. Wheeler, Francis J. Kub, Charles R. Eddy, JR., Marko J. Tadjer
  • Patent number: 9196614
    Abstract: An inverted P-channel III-nitride field effect transistor with hole carriers in the channel comprising a gallium-polar III-Nitride barrier material, a second material layer, a two-dimensional hole gas in the second layer, and wherein the gallium-polar material comprises one or more III-Nitride epitaxial material layers grown such that when GaN is epitaxially grown the top surface of the epitaxial layer is gallium-polar. A method of making an inverted P-channel III-nitride field effect transistor with hole carriers in the channel comprising selecting a face or offcut orientation of a substrate so that the gallium-polar (0001) face is the dominant face, growing a nucleation layer, growing a gallium-polar epitaxial layer, doping the epitaxial layer, growing a barrier layer, etching the GaN, forming contacts, performing device isolation, defining a gate opening, depositing and defining gate metal, making a contact window, depositing and defining a thick metal.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: November 24, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis J. Anderson, Andrew D. Koehler, Karl D. Hobart