Patents by Inventor Francis J. Rogomentich

Francis J. Rogomentich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11392805
    Abstract: A potentially small, gimballed, multi-sensor system employs a shared aperture for at least some of the image sensors. Applications include intelligence, surveillance, target acquisition and reconnaissance (ISTAR), and guiding autonomous vehicles. The system can actively blend images from multiple spectral bands for clarity and interpretability, provide remote identification of objects and material, provide anomaly detection, control lasers and opto-mechanics for image quality, and use shared aperture using folded optics.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 19, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Matthew A. Sinclair, Adam Kelsey, Paul Aaron Bohn, Stephanie L. Golmon, Francis J. Rogomentich, Juha-Pekka Laine, Buddy A. Clemmer, David A. Landis
  • Patent number: 11287635
    Abstract: An optical system such as an imaging system, projecting system or combined imaging and projecting system, has complex dielectric coatings and/or reflecting polarizers to separate multiple spectral bands and/or polarizations on one or more of the system's curved mirrors.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 29, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Matthew A. Sinclair, Paul Aaron Bohn, Juha-Pekka Laine, Francis J. Rogomentich
  • Patent number: 10901190
    Abstract: A digital camera optically couples a monocentric lens to image sensor arrays, without optical fibers, yet shields the image sensor arrays from stray light. In some digital cameras, baffles are disposed between an outer surface of a monocentric lens and each image sensor array to shield the image sensor arrays from stray light. In other such digital cameras, an opaque mask defines a set of apertures, one aperture per image sensor array, to limit the amount of stray light. Some digital cameras include both masks and baffles.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 26, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Erik L. Waldron, Gregory P. Blasche, Paul Bohn, Robin Mark Adrian Dawson, Walter Foley, Samuel Harrison, Matthew T. Jamula, Juha-Pekka J. Laine, Benjamin F. Lane, Sean McClain, Francis J. Rogomentich, Stephen P. Smith, John James Boyle
  • Patent number: 10838150
    Abstract: A coupling interface arrangement is described for a photonic integrated circuit (PIC) device. The PIC includes an interface coupling surface having optical grating elements arranged to form optical output locations that produce corresponding light output beams. A coupling lens couples the light output beams into a conjugate plane at a far-field scene characterized by one or more optical aberrations that degrade optical resolution of the light outputs. The optical grating elements are configured to correct for the one or more optical aberrations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 17, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Byrnes, Steven J. Spector, Francis J. Rogomentich, Matthew A. Sinclair
  • Publication number: 20200136340
    Abstract: A LiDAR system includes an array of optical emitters, an objective lens optically coupling each optical emitter to a respective unique portion of a field of view, an optical switching network coupled between a laser and the array of optical emitters and a controller coupled to the optical switching network and configured to cause the optical switching network to route light from the laser to a sequence of the optical emitters according to a dynamically varying temporal pattern and to vary the temporal pattern in a way that reduces risk of eye injury from the laser light.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 30, 2020
    Inventors: Michael G. Moebius, Steven J. Spector, Steven J. Byrnes, Christopher Bessette, Scott Evan Lennox, Matthew A. Sinclair, Francis J. Rogomentich
  • Publication number: 20200004006
    Abstract: An optical system such as an imaging system, projecting system or combined imaging and projecting system, has complex dielectric coatings and/or reflecting polarizers to separate multiple spectral bands and/or polarizations on one or more of the system's curved mirrors.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Matthew A. Sinclair, Paul Aaron Bohn, Juha-Pekka Laine, Francis J. Rogomentich
  • Publication number: 20200005097
    Abstract: A potentially small, gimballed, multi-sensor system employs a shared aperture for at least some of the image sensors. Applications include intelligence, surveillance, target acquisition and reconnaissance (ISTAR), and guiding autonomous vehicles. The system can actively blend images from multiple spectral bands for clarity and interpretability, provide remote identification of objects and material, provide anomaly detection, control lasers and opto-mechanics for image quality, and use shared aperture using folded optics.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Matthew A. Sinclair, Adam Kelsey, Paul Aaron Bohn, Stephanie L. Golmon, Francis J. Rogomentich, Juha-Pekka Laine, Buddy A. Clemmer, David A. Landis
  • Publication number: 20190162908
    Abstract: A coupling interface arrangement is described for a photonic integrated circuit (PIC) device. The PIC includes an interface coupling surface having optical grating elements arranged to form optical output locations that produce corresponding light output beams. A coupling lens couples the light output beams into a conjugate plane at a far-field scene characterized by one or more optical aberrations that degrade optical resolution of the light outputs. The optical grating elements are configured to correct for the one or more optical aberrations.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Inventors: Michael G. Moebius, Steven J. Byrnes, Steven J. Spector, Francis J. Rogomentich, Matthew A. Sinclair
  • Patent number: 10178372
    Abstract: An optical assembly for three-dimensional image capture includes first and second optical channels that are fixed with respect to one another. Each channel is configured to direct light onto at least a portion of an image sensor. The first and second optical channels each include an aperture for receiving the light, an objective lens for focusing the light into an intermediate image on an intermediate image plane, and an eyepiece lens for collimating the intermediate image.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: January 8, 2019
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Scott A. Rasmussen, Francis J. Rogomentich, Robert A. Larsen
  • Patent number: 9989745
    Abstract: A folded optical system includes a powered optical element, at least one folding mirror and an aperture and defines an optical path through the optical system. The powered optical element, the at least one folding mirror and the aperture are configured to fold the optical path at the aperture, thereby providing a compact optical system. The optical system may include an optical block that totally internally reflects the optical signal at the aperture. Optionally or alternatively, discrete optical components may be used, such as an aperture made of a conventional material or a metamaterial, an off-axis parabolic mirror or lens and one or more folding mirrors. Some embodiments include a wavelength dispersive element, so as to implement a spectrometer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: June 5, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Francis J. Rogomentich, Stephen P. Smith, Robert Larsen
  • Publication number: 20170119250
    Abstract: A fundoscopy system comprises a fixture supporting optics configured to be mounted to a surface of a smartphone and align the optics with a pupil of a camera of the smartphone and to align a light guide with an illumination source of the smartphone. The light guide is configured to direct light from the illumination source into an eye of a subject disposed in front of the fixture. The fixture is further configured to direct light reflected from a retina of the eye through the optics and into the pupil of the camera of the smartphone.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 4, 2017
    Inventors: Vijaya B. Kolachalama, Cort N. Johnson, Francis J. Rogomentich, Mitchell L. Hansberry, Scott T. Bambrick, Philip D. Parks, II
  • Publication number: 20160381267
    Abstract: A digital camera optically couples a monocentric lens to image sensor arrays, without optical fibers, yet shields the image sensor arrays from stray light. In some digital cameras, baffles are disposed between an outer surface of a monocentric lens and each image sensor array to shield the image sensor arrays from stray light. In other such digital cameras, an opaque mask defines a set of apertures, one aperture per image sensor array, to limit the amount of stray light. Some digital cameras include both masks and baffles.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 29, 2016
    Inventors: Erik L. Waldron, Gregory P. Blasche, Paul Bohn, Robin Mark Adrian Dawson, Walter Foley, Samuel Harrison, Matthew T. Jamula, Juha-Pekka J. Laine, Benjamin F. Lane, Sean McClain, Francis J. Rogomentich, Stephen P. Smith, John James Boyle
  • Patent number: 9417442
    Abstract: A folded optical system includes a powered optical element, at least one folding mirror and an aperture and defines an optical path through the optical system. The powered optical element, the at least one folding mirror and the aperture are configured to fold the optical path at the aperture, thereby providing a compact optical system. The optical system may include an optical block that totally internally reflects the optical signal at the aperture. Optionally or alternatively, discrete optical components may be used, such as an aperture made of a conventional material or a metamaterial, an off-axis parabolic mirror or lens and one or more folding mirrors. Some embodiments include a wavelength dispersive element, so as to implement a spectrometer.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: August 16, 2016
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Francis J. Rogomentich, Stephen P. Smith, Robert Larsen
  • Publication number: 20130314509
    Abstract: An optical assembly for three-dimensional image capture includes first and second optical channels that are fixed with respect to one another. Each channel is configured to direct light onto at least a portion of an image sensor. The first and second optical channels each include an aperture for receiving the light, an objective lens for focusing the light into an intermediate image on an intermediate image plane, and an eyepiece lens for collimating the intermediate image.
    Type: Application
    Filed: February 25, 2013
    Publication date: November 28, 2013
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Scott A. Rasmussen, Francis J. Rogomentich, Robert A. Larsen
  • Publication number: 20090069673
    Abstract: An apparatus is disclosed including: an optical coherence tomographic system; a spinal needle having a needle tip adapted to penetrate tissue; and an optical delivery system adapted to direct probe light from the optical coherence tomographic system onto tissue located in front of the needle tip, collect test light backscattered from the tissue, and transmit the test light to the optical coherence tomographic system. The optical coherence tomographic system is adapted to provide information indicative of one or more properties of the tissue based on the test light.
    Type: Application
    Filed: March 17, 2008
    Publication date: March 12, 2009
    Inventors: H. Charles Tapalian, Francis J. Rogomentich, Marc Steven Weinberg