Patents by Inventor Francis M Tambwe

Francis M Tambwe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9515026
    Abstract: A device disclosed herein includes a plurality of spaced-apart fin structures formed in a semiconductor substrate so as to define an alignment/overlay mark trench. An alignment/overlay mark includes at least one insulating material positioned within the alignment/overlay mark trench. The alignment/overlay mark is devoid of any of the fin structures.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: December 6, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andy C. Wei, Jeong Soo Kim, Francis M. Tambwe
  • Publication number: 20160141252
    Abstract: A device disclosed herein includes a plurality of spaced-apart fin structures formed in a semiconductor substrate so as to define an alignment/overlay mark trench. An alignment/overlay mark includes at least one insulating material positioned within the alignment/overlay mark trench. The alignment/overlay mark is devoid of any of the fin structures.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 19, 2016
    Inventors: Andy C. Wei, Jeong Soo Kim, Francis M. Tambwe
  • Patent number: 9275890
    Abstract: One illustrative method disclosed herein includes forming a plurality of spaced-apart fin structures in a semiconductor substrate, wherein the fin structures define a portion of an alignment/overlay mark trench where at least a portion of an alignment/overlay mark will be formed, forming at least one layer of insulating material that overfills the alignment/overlay mark trench and removing excess portions of the layer of insulating material positioned above an upper surface of the plurality of fins to thereby define at least a portion of the alignment/overlay mark positioned within the alignment/overlay mark trench. A device disclosed herein includes a plurality of spaced-apart fin structures formed in a semiconductor substrate so as to partially define an alignment/overlay mark trench, an alignment/overlay mark consisting only of at least one insulating material positioned within the alignment/overlay mark trench, and a plurality of FinFET semiconductor devices formed in and above the substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 1, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andy C. Wei, Jeong Soo Kim, Francis M. Tambwe
  • Patent number: 9105507
    Abstract: A FinFET device includes a plurality of fin structures positioned in and above a semiconducting substrate, wherein each of the fin structures includes a first portion of the semiconducting substrate, an undoped layer of semiconducting material positioned above the first portion of the semiconducting substrate, and a dopant-containing layer of semiconducting material positioned between the first portion of the semiconducting substrate and the undoped semiconducting material, wherein the dopant material is adapted to retard diffusion of one of boron and phosphorous. A gate electrode is positioned around at least the undoped layer of semiconducting material of each of the plurality of fin structures, wherein a height level of a bottom surface of the gate electrode is positioned approximately level with or lower than a height level of a bottom of the undoped layer of semiconducting material of each of the plurality of fin structures.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: August 11, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andy C. Wei, Akshey Sehgal, Seung Y. Kim, Teck Jung Tang, Francis M. Tambwe
  • Publication number: 20150123214
    Abstract: A FinFET device includes a plurality of fin structures positioned in and above a semiconducting substrate, wherein each of the fin structures includes a first portion of the semiconducting substrate, an undoped layer of semiconducting material positioned above the first portion of the semiconducting substrate, and a dopant-containing layer of semiconducting material positioned between the first portion of the semiconducting substrate and the undoped semiconducting material, wherein the dopant material is adapted to retard diffusion of one of boron and phosphorous. A gate electrode is positioned around at least the undoped layer of semiconducting material of each of the plurality of fin structures, wherein a height level of a bottom surface of the gate electrode is positioned approximately level with or lower than a height level of a bottom of the undoped layer of semiconducting material of each of the plurality of fin structures.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 7, 2015
    Inventors: Andy C. Wei, Akshey Sehgal, Seung Y. Kim, Teck Jung Tang, Francis M. Tambwe
  • Patent number: 8975141
    Abstract: A method for fabricating a dual-workfunction FinFET structure includes depositing a first workfunction material in a layer in a plurality of trenches of the FinFET structure, depositing a low-resistance material layer over the first workfunction material layer, and etching the low-resistance material layer and the first workfunction material layer from a portion of the FinFET structure. The method further includes depositing a second workfunction material in a layer in a plurality of trenches of the portion and depositing a stress material layer over the second workfunction material layer.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: March 10, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Andy C. Wei, Bin Yang, Francis M. Tambwe
  • Patent number: 8969932
    Abstract: One method disclosed herein includes, prior to forming an isolation region in a semiconducting substrate for the device, forming a doped well region and a doped punch-stop region in the substrate, introducing a dopant material that is adapted to retard diffusion of boron or phosphorous into the substrate to form a dopant-containing layer proximate an upper surface of the substrate, performing an epitaxial deposition process to form an undoped semiconducting material above the dopant-containing layer, forming a plurality of spaced-apart trenches that extend at least partially into the substrate, wherein the trenches define a fin for the device comprised of at least the undoped semiconducting material, forming at least a local isolation insulating material in the trenches, and forming a gate structure around at least the undoped semiconducting material, wherein a bottom of a gate electrode is positioned approximately level with or below a bottom of the undoped semiconducting material.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 3, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andy C. Wei, Akshey Sehgal, Seung Y. Kim, Teck Jung Tang, Francis M. Tambwe
  • Publication number: 20140264631
    Abstract: One illustrative method disclosed herein includes forming a plurality of spaced-apart fin structures in a semiconductor substrate, wherein the fin structures define a portion of an alignment/overlay mark trench where at least a portion of an alignment/overlay mark will be formed, forming at least one layer of insulating material that overfills the alignment/overlay mark trench and removing excess portions of the layer of insulating material positioned above an upper surface of the plurality of fins to thereby define at least a portion of the alignment/overlay mark positioned within the alignment/overlay mark trench. A device disclosed herein includes a plurality of spaced-apart fin structures formed in a semiconductor substrate so as to partially define an alignment/overlay mark trench, an alignment/overlay mark consisting only of at least one insulating material positioned within the alignment/overlay mark trench, and a plurality of FinFET semiconductor devices formed in and above the substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Andy C. Wei, Jeong Soo Kim, Francis M. Tambwe
  • Publication number: 20140159126
    Abstract: One method disclosed herein includes, prior to forming an isolation region in a semiconducting substrate for the device, forming a doped well region and a doped punch-stop region in the substrate, introducing a dopant material that is adapted to retard diffusion of boron or phosphorous into the substrate to form a dopant-containing layer proximate an upper surface of the substrate, performing an epitaxial deposition process to form an undoped semiconducting material above the dopant-containing layer, forming a plurality of spaced-apart trenches that extend at least partially into the substrate, wherein the trenches define a fin for the device comprised of at least the undoped semiconducting material, forming at least a local isolation insulating material in the trenches, and forming a gate structure around at least the undoped semiconducting material, wherein a bottom of a gate electrode is positioned approximately level with or below a bottom of the undoped semiconducting material.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Inventors: Andy C. Wei, Akshey Sehgal, Seung Y. Kim, Teck Jung Tang, Francis M. Tambwe
  • Publication number: 20140038402
    Abstract: A method for fabricating a dual-workfunction FinFET structure includes depositing a first workfunction material in a layer in a plurality of trenches of the FinFET structure, depositing a low-resistance material layer over the first workfunction material layer, and etching the low-resistance material layer and the first workfunction material layer from a portion of the FinFET structure. The method further includes depositing a second workfunction material in a layer in a plurality of trenches of the portion and depositing a stress material layer over the second workfunction material layer.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Andy C. Wei, Bin Yang, Francis M. Tambwe
  • Patent number: 7166506
    Abstract: A method of fabricating microelectronic structure using at least two material removal steps, such as for in a poly open polish process, is disclosed. In one embodiment, the first removal step may be chemical mechanical polishing (CMP) step utilizing a slurry with high selectivity to an interlevel dielectric layer used relative to an etch stop layer abutting a transistor gate. This allows the first CMP step to stop after contacting the etch stop layer, which results in substantially uniform “within die”, “within wafer”, and “wafer to wafer” topography. The removal step may expose a temporary component, such as a polysilicon gate within the transistor gate structure. Once the polysilicon gate is exposed other processes may be employed to produce a transistor gate having desired properties.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: January 23, 2007
    Assignee: Intel Corporation
    Inventors: Matthew J. Prince, Francis M. Tambwe, Chris E. Barns
  • Patent number: 7125321
    Abstract: A multi-platen, multi-slurry chemical mechanical polishing method comprises providing a substrate having a surface that includes at least one nitride structure and an oxide layer atop the nitride structure, performing a first CMP process on the substrate using a first platen with a silica based slurry to remove a bulk portion of the oxide layer without exposing the nitride structure, performing a second CMP process on the substrate using a second platen with a ceria based slurry to remove a residual portion of the oxide layer and to expose at least a portion of the nitride structure, and performing a third CMP process on the substrate using the first platen with a silica based slurry to remove at least one defect caused by the ceria based slurry.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: October 24, 2006
    Assignee: Intel Corporation
    Inventors: Matthew J Prince, Mansour Moinpour, Francis M Tambwe, Gary Ding