Patents by Inventor Francis Mark Reininger

Francis Mark Reininger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220122900
    Abstract: A synthetic diamond plate comprising a polygonal plate formed of synthetic diamond material, the polygonal plate of synthetic diamond material having a thickness in a range 0.4 mm to 1.5 mm, and rounded corners having a radius of curvature in a range 1 mm to 6 mm. A mounted synthetic diamond plate is also disclosed comprising a polygonal synthetic diamond plate as described and a base to which the polygonal synthetic diamond plate is bonded, wherein the base comprises a cooling channel. An array of mounted synthetic diamond plates is also described, comprising a plurality of mounted synthetic diamond plates described above, wherein the cooling channels of the mounted synthetic diamond plates are linked to form a common cooling channel across the array of mounted synthetic diamond plates.
    Type: Application
    Filed: November 19, 2021
    Publication date: April 21, 2022
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: Julian Ellis, John Brandon, Francis Mark Reininger
  • Patent number: 11211306
    Abstract: A synthetic diamond plate comprising a polygonal plate formed of synthetic diamond material, the polygonal plate of synthetic diamond material having a thickness in a range 0.4 mm to 1. mm, and rounded corners having a radius of curvature in a range 1 mm to 6 mm. A mounted synthetic diamond plate is also disclosed comprising a polygonal synthetic diamond plate as described and a base to which the polygonal synthetic diamond plate is bonded, wherein the base comprises a cooling channel. An array of mounted synthetic diamond plates is also described, comprising a plurality of mounted synthetic diamond plates described above, wherein the cooling channels of the mounted synthetic diamond plates are linked to form a common cooling channel across the array of mounted synthetic diamond plates.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 28, 2021
    Assignee: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: Julian Ellis, John Brandon, Francis Mark Reininger
  • Publication number: 20210118766
    Abstract: A synthetic diamond plate comprising a polygonal plate formed of synthetic diamond material, the polygonal plate of synthetic diamond material having a thickness in a range 0.4 mm to 1. mm, and rounded corners having a radius of curvature in a range 1 mm to 6 mm. A mounted synthetic diamond plate is also disclosed comprising a polygonal synthetic diamond plate as described and a base to which the polygonal synthetic diamond plate is bonded, wherein the base comprises a cooling channel. An array of mounted synthetic diamond plates is also described, comprising a plurality of mounted synthetic diamond plates described above, wherein the cooling channels of the mounted synthetic diamond plates are linked to form a common cooling channel across the array of mounted synthetic diamond plates.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 22, 2021
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: JULIAN ELLIS, JOHN BRANDON, FRANCIS MARK REININGER
  • Patent number: 8576489
    Abstract: A wide angle imaging system combines compound array fore-optics with single axis relay optics to generate distortion free images with an infinite depth of field. A curved first array of objective lenslets focuses multiple apertures of light through the tubes of a louver baffle terminated by field stops. A curved second array of field lenslets, positioned immediately after the field stops, passes the light beams through an array of pupil planes. A curved final array of erector lenslets refocuses the beams into a curved array of sub-images. The relay optics transform the curved array of sub-images into a flat final image that is contiguous. The fore-optics and relay optics are optimized concurrently to achieve much higher performance than is possible in either compound array optics or sequential optics. This is accomplished by varying the lenslet radii of the fore-optics in annular increments to compensate for aberrations introduced by the relay lenses.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: November 5, 2013
    Assignee: Spectral Imaging Laboratory
    Inventor: Francis Mark Reininger
  • Publication number: 20120026592
    Abstract: A wide angle imaging system combines compound array fore-optics with single axis relay optics to generate distortion free images with an infinite depth of field. A curved first array of objective lenslets focuses multiple apertures of light through the tubes of a louver baffle terminated by field stops. An intermediate curved array of field lenslets, positioned immediately after the field stops, passes the light beams through an array of pupil planes. A curved final array of erector lenslets refocuses and adjoins the beams into a contiguous image that is curved. The relay optics transform the curved intermediate image into a flat final image. The fore-optics and relay optics are optimized concurrently to achieve much higher performance than is possible in either compound array optics or sequential optics. This is accomplished by varying the lenslet radii of the fore-optics in annular increments to compensate for aberrations introduced by the relay lenses.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicant: SPECTRAL IMAGING LABORATORY
    Inventor: Francis Mark Reininger
  • Patent number: 7587109
    Abstract: A hybrid, wide angle imaging system combines high sensitivity superposition arrays with a high resolution apposition array to generate distortion free images with an infinite depth of field. A conformal, superposition array of Keplerian telescope objectives focuses multiple apertures of light through the tubes of a louver baffle. The baffle tubes are terminated by field stops that separate the focused light into inverted, intermediate sub-images. A superposition array of field lenses, positioned immediately after the field stops, reverses the angles of the light beams. An apposition array of erector lenses, linked optically to the superposition arrays and field stops, refocuses and adjoins the beams into a single, upright image. The upright image is formed on the convex surface of a fiber optic imaging taper, which transfers the image to the flat bottom of the taper where it can be viewed through an eyepiece or digitized by a detector array.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: September 8, 2009
    Assignee: Spectral Imaging Laboratory
    Inventor: Francis Mark Reininger
  • Patent number: 7376314
    Abstract: A multiple aperture array, wide angle imaging system incorporates compound refractive optics modeled after the eyes of insects. The system channels light through the apertures of a convex spatial filter and a pair of lenslet arrays hot press molded on a positive meniscus form. The lenslets act as afocal Keplerian telescopes to superpose light from hundreds of adjacent channels to a common point on the convex surface of a fiber optic imaging taper. The superposed light from all the channels form a curved, high intensity image that is transformed by the taper into a flat format for readout by a mosaic detector array. The image is upright and distortion free with an infinite depth of field. Ghost images are blocked by a honeycomb louver baffle positioned between the lenslets and the imaging taper. The system is conformable to the geometry of any convex mounting surface, whether spherical, aspherical, or cylindrical.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: May 20, 2008
    Assignee: Spectral Imaging Laboratory
    Inventor: Francis Mark Reininger
  • Publication number: 20070237490
    Abstract: A multiple aperture array, wide angle imaging system incorporates compound refractive optics modeled after the eyes of insects. The system channels light through the apertures of a convex spatial filter and a pair of lenslet arrays hot press molded on a positive meniscus form. The lenslets act as afocal Keplerian telescopes to superpose light from hundreds of adjacent channels to a common point on the convex surface of a fiber optic imaging taper. The superposed light from all the channels form a curved, high intensity image that is transformed by the taper into a flat format for readout by a mosaic detector array. The image is upright and distortion free with an infinite depth of field. Ghost images are blocked by a honeycomb louver baffle positioned between the lenslets and the imaging taper. The system is conformable to the geometry of any convex mounting surface, whether spherical, aspherical, or cylindrical.
    Type: Application
    Filed: March 14, 2007
    Publication date: October 11, 2007
    Inventor: Francis Mark Reininger