Patents by Inventor Francis Morgan Boland

Francis Morgan Boland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10142755
    Abstract: Techniques of rendering audio involve applying a balanced-realization state space model to each head-related transfer function (HRTF) to reduce the order of an effective FIR or even an infinite impulse response (IIR) filter. Along these lines, each HRTF G(z) is derived from a head-related impulse response filter (HRIR) via, e.g., a z-transform. The data of the HRIR may be used to construct a first state space representation [A, B, C, D] of the HRTF via the relation G(z)=C(zI?A)?1B+D This first state space representation is not unique and so for an FIR filter, A and B may be set to simple, binary-valued arrays, while C and D contain the HRIR data. This representation leads to a simple form of a Gramian Q whose eigenvectors provide system states that maximize the system gain as measured by a Hankel norm.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: November 27, 2018
    Assignee: Google LLC
    Inventor: Francis Morgan Boland
  • Publication number: 20170245082
    Abstract: Techniques of rendering audio involve applying a balanced-realization state space model to each head-related transfer function (HRTF) to reduce the order of an effective FIR or even an infinite impulse response (IIR) filter. Along these lines, each HRTF G(z) is derived from a head-related impulse response filter (HRIR) via, e.g., a z-transform. The data of the HRIR may be used to construct a first state space representation [A, B, C, D] of the HRTF via the relation .G(z)=C(zI?A)?1B+D This first state space representation is not unique and so for an FIR filter, A and B may be set to simple, binary-valued arrays, while C and D contain the HRIR data. This representation leads to a simple form of a Gramian Q whose eigenvectors provide system states that maximize the system gain as measured by a Hankel norm. Further, a factorization of Q provides a transformation into a balanced state space in which the Gramian is equal to a diagonal matrix of the eigenvalues of Q.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 24, 2017
    Inventor: Francis Morgan Boland