Patents by Inventor Francis Patrick McCullough

Francis Patrick McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6413633
    Abstract: The invention resides in a novel ignition resistant activated biregional fiber that is extremely flexible due to the presence of an inner core of a thermoplastic polymeric composition in the fiber that is surrounded by an outer sheath of activated carbon. The invention also discloses a process for the manufacture of flexible activated biregional fiber(s) by heating oxidation stabilized biregional fibers or carbonaceous biregional fibers in an activating atmosphere for a period of time and at a temperature sufficient to form an activated carbonaceous outer region in the fiber while the inner core of the fiber remain as a thermoplastic polymeric composition. The activated biregional fibers are particularly characterized by having a highly porous internal structure with an internal surface area of from about 50 m2/g to greater than 2000 m2/g depending on fiber diameter.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: July 2, 2002
    Inventor: Francis Patrick McCullough
  • Patent number: 5837626
    Abstract: A novel ignition resistant or fire blocking composite is disclosed comprising a multiplicity of biregional fibers with a thermoplastic or thermoset polymer, wherein each said biregional fiber comprises an inner region of a thermoplastic polymeric core and an outer region of a carbonaceous sheath, and wherein said biregional fibers are present in the composite in an amount of from 10 to 95% by weight, based on the total weight of the composite. In one embodiment, the multiplicity of biregional fibers are treated with up to 20% of a polymerizable silicone resin. In a further embodiment the thermoplastic or thermoset polymer is in the form of a sheet or panel and said multiplicity of biregional fibers are distributed throughout the polymeric matrix of the sheet or panel in an amount of from about 20 to 75%.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: November 17, 1998
    Inventor: Francis Patrick McCullough
  • Patent number: 5821012
    Abstract: An electrode is disclosed comprising a multiplicity of flexible biregional fibers, each fiber having an inner core region of a thermoplastic polymeric composition and a surrounding outer region of an electrically conductive carbonaceous sheath. The biregional fiber is derived from a biregional precursor fiber having an inner core region of a thermoplastic polymeric composition and a surrounding outer region of an oxidation stabilized sheath, and wherein the biregional precursor fiber is derived from a polymeric fiber comprising a single homogeneous polymeric composition, the flexible biregional fiber is particularly characterized by having a ratio of the radius of the core region with respect to the total radius of the fiber (r:R) of from about 1:4 to about 1:1.05 and a breaking twist angle of from about 4 to about 13 degrees. Also disclosed are secondary electrical storage devices employing electrodes of the invention.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: October 13, 1998
    Inventor: Francis Patrick McCullough
  • Patent number: 5776607
    Abstract: A novel flexible biregional carbonaceous fiber is disclosed comprising an inner core region of a thermoplastic polymeric material and an outer region of a carbonaceous sheath. The flexible biregional carbonaceous fibers are particularly characterized by having a ratio of the radius of the core region with respect to the total radius of the fiber (r:R) of from about 1:4 to about 1:1.05, a density of from about 1.45 to about 1.87 g/cm.sup.3, and a bending strain value of from greater than 0.01 to less than 50%. In a further embodiment of the invention, a biregional precursor fiber is disclosed having an inner core region of a thermoplastic polymeric material and an outer sheath region of a oxidation stabilized, thermoset polymeric material. The oxidation stabilized precursor fiber is characterized by having a density of from about 1.20 to about 1.32 g/cm.sup.3 The invention further resides in methods of making the biregional fibers.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: July 7, 1998
    Inventor: Francis Patrick McCullough
  • Patent number: 5776609
    Abstract: A novel flexible biregional carbonaceous fiber is disclosed comprising an inner core region of a thermoplastic polymeric material and an outer region of a carbonaceous sheath. The flexible biregional carbonaceous fibers are particularly characterized by having a ratio of the radius of the core region with respect to the total radius of the fiber (r:R) of from about 1:4 to about 1:1.05, a density of from about 1.45 to about 1.87 g/cm.sup.3, and a bending strain value of from greater than 0.01 to less than 50%. In a further embodiment of the invention, a biregional precursor fiber is disclosed having an inner core region of a thermoplastic polymeric material and an outer sheath region of a oxidation stabilized, thermoset polymeric material. The oxidation stabilized precursor fiber is characterized by having a density of from about 1.20 to about 1.32 g/cm.sup.3 The invention further resides in methods of making the biregional fibers.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: July 7, 1998
    Inventor: Francis Patrick McCullough
  • Patent number: 5763103
    Abstract: A novel flexible biregional carbonaceous fiber is disclosed comprising an inner core region of a thermoplastic polymeric material and an outer region of a carbonaceous sheath. The flexible biregional carbonaceous fibers are particularly characterized by having a ratio of the radius of the core region with respect to the total radius of the fiber (r:R) of from about 1:4 to about 1:1.05, a density of from about 1.45 to about 1.87 g/cm.sup.3, and a bending strain value of from greater than 0.01 to less than 50%. In a further embodiment of the invention, a biregional precursor fiber is disclosed having an inner core region of a thermoplastic polymeric material and an outer sheath region of a oxidation stabilized, thermoset polymeric material. The oxidation stabilized precursor fiber is characterized by having a density of from about 1.20 to about 1.32 g/cm.sup.3. The invention further resides in methods of making the biregional fibers.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: June 9, 1998
    Inventor: Francis Patrick McCullough
  • Patent number: 5700573
    Abstract: A novel flexible biregional carbonaceous fiber is disclosed comprising an inner core region of a thermoplastic polymeric material and an outer region of a carbonaceous sheath. The flexible biregional carbonaceous fibers are particularly characterized by having a ratio of the radius of the core region with respect to the total radius of the fiber (r:R) of from about 1:4 to about 1:1.05, a density of from about 1.45 to about 1.87 g/cm.sup.3, and a bending strain value of from greater than 0.01 to less than 50%. In a further embodiment of the invention, a biregional precursor fiber is disclosed having an inner core region of a thermoplastic polymeric material and an outer sheath region of a oxidation stabilized, thermoset polymeric material. The oxidation stabilized precursor fiber is characterized by having a density of from about 1.20 to about 1.32 g/cm.sup.3 The invention further resides in methods of making the biregional fibers.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: December 23, 1997
    Inventor: Francis Patrick McCullough