Patents by Inventor Francis V. Lamberti

Francis V. Lamberti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8883184
    Abstract: Connective tissue regenerative compositions and methods of repairing and regenerating connective tissue using such compositions are provided. The compositions generally comprise a bioactive hydrogel matrix comprising a polypeptide, such as gelatin, and a long chain carbohydrate, such as dextran. The hydrogel matrix may further include polar amino acids, as well as additional beneficial additives. Advantageously, the compositions include further components, such as osteoinductive or osteoconductive materials, medicaments, stem or progenitor cells, and three-dimensional structural frameworks. The compositions are useful for regenerating connective tissue, and can be administered to an area having injury to, or a loss of, connective tissue, such as bone, cartilage, tendon, and ligament.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: November 11, 2014
    Assignee: Pioneer Surgical Technology, Inc.
    Inventors: Ronald Stewart Hill, Richard Chris Klann, Francis V. Lamberti
  • Patent number: 8664202
    Abstract: The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: March 4, 2014
    Assignee: Pioneer Surgical Technology, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Patent number: 8609122
    Abstract: The present invention is directed to a stabilized bioactive hydrogel matrix coating for substrates, such as medical devices. The invention provides a coated substrate comprising a substrate having a surface, and a bioactive hydrogel matrix layer overlying the surface of the medical device, the hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component, the first and second high molecular weight components each being selected from the group consisting of polyglycans and polypeptides, wherein at least one of the first and second high molecular weight components is immobilized (e.g., by covalent cross-linking) to the surface of the substrate.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 17, 2013
    Assignee: Pioneer Surgical Technology, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Publication number: 20120328700
    Abstract: Connective tissue regenerative compositions and methods of repairing and regenerating connective tissue using such compositions are provided. The compositions generally comprise a bioactive hydrogel matrix comprising a polypeptide, such as gelatin, and a long chain carbohydrate, such as dextran. The hydrogel matrix may further include polar amino acids, as well as additional beneficial additives. Advantageously, the compositions include further components, such as osteoinductive or osteoconductive materials, medicaments, stem or progenitor cells, and three-dimensional structural frameworks. The compositions are useful for regenerating connective tissue, and can be administered to an area having injury to, or a loss of, connective tissue, such as bone, cartilage, tendon, and ligament.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Inventors: Ronald Stewart Hill, Richard Chris Klann, Francis V. Lamberti
  • Publication number: 20120321597
    Abstract: Connective tissue regenerative compositions and methods of repairing and regenerating connective tissue using such compositions are provided. The compositions generally comprise a bioactive hydrogel matrix comprising a polypeptide, such as gelatin, and a long chain carbohydrate, such as dextran. The hydrogel matrix may further include polar amino acids, as well as additional beneficial additives. Advantageously, the compositions include further components, such as osteoinductive or osteoconductive materials, medicaments, stem or progenitor cells, and three-dimensional structural frameworks. The compositions are useful for regenerating connective tissue, and can be administered to an area having injury to, or a loss of, connective tissue, such as bone, cartilage, tendon, and ligament.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 20, 2012
    Inventors: Ronald Stewart Hill, Richard Chris Klann, Francis V. Lamberti
  • Publication number: 20120076868
    Abstract: The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
    Type: Application
    Filed: October 4, 2011
    Publication date: March 29, 2012
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Patent number: 8053423
    Abstract: The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 8, 2011
    Assignee: Encelle, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Patent number: 7799767
    Abstract: The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: September 21, 2010
    Assignee: Pioneer Surgical Orthobiologics, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Publication number: 20100226961
    Abstract: The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 9, 2010
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Publication number: 20090130756
    Abstract: The present invention is directed to methods of cryopreserving cells and cryopreserved cells prepared according to the methods. In specific embodiments, the method comprises combining cells with a cross-linked hydrogel matrix in particulate form, the matrix comprising a polyglycan cross-linked to a polypeptide and subjecting the combination to cryopreservation conditions. In further embodiments, the invention provides cell-seeded compositions comprising cells and a cross-linked bioactive hydrogel matrix in particulate form, the matrix comprising a polyglycan cross-linked to a polypeptide, wherein the composition has been subjected to cryopreservation conditions. The cryopreserved cells can be thawed and used in methods of treatment without the need for intervening steps to make the cells viable for in vivo use.
    Type: Application
    Filed: November 20, 2008
    Publication date: May 21, 2009
    Inventors: Richard C. Klann, Francis V. Lamberti, Ronald S. Hill
  • Publication number: 20090124552
    Abstract: Connective tissue regenerative compositions and methods of repairing and regenerating connective tissue using such compositions are provided. The compositions generally comprise a bioactive hydrogel matrix comprising a polypeptide, such as gelatin, and a long chain carbohydrate, such as dextran. The hydrogel matrix may further include polar amino acids, as well as additional beneficial additives. Advantageously, the compositions include further components, such as osteoinductive or osteoconductive materials, medicaments, stem or progenitor cells, and three-dimensional structural frameworks. The compositions are useful for regenerating connective tissue, and can be administered to an area having injury to, or a loss of, connective tissue, such as bone, cartilage, tendon, and ligament.
    Type: Application
    Filed: January 20, 2009
    Publication date: May 14, 2009
    Inventors: Ronald Stewart Hill, Richard Chris Klann, Francis V. Lamberti
  • Publication number: 20090123547
    Abstract: Connective tissue regenerative compositions and methods of repairing and regenerating connective tissue using such compositions are provided. The compositions generally comprise a bioactive hydrogel matrix comprising a polypeptide, such as gelatin, and a long chain carbohydrate, such as dextran. The hydrogel matrix may further include polar amino acids, as well as additional beneficial additives. Advantageously, the compositions include further components, such as osteoinductive or osteoconductive materials, medicaments, stem or progenitor cells, and three-dimensional structural frameworks. The compositions are useful for regenerating connective tissue, and can be administered to an area having injury to, or a loss of, connective tissue, such as bone, cartilage, tendon, and ligament.
    Type: Application
    Filed: January 20, 2009
    Publication date: May 14, 2009
    Inventors: Ronald Stewart Hill, Richard Chris Klann, Francis V. Lamberti
  • Publication number: 20080199508
    Abstract: The present invention is directed to a stabilized bioactive hydrogel matrix coating for substrates, such as medical devices. The invention provides a coated substrate comprising a substrate having a surface, and a bioactive hydrogel matrix layer overlying the surface of the medical device, the hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component, the first and second high molecular weight components each being selected from the group consisting of polyglycans and polypeptides, wherein at least one of the first and second high molecular weight components is immobilized (e.g., by covalent cross-linking) to the surface of the substrate.
    Type: Application
    Filed: November 9, 2007
    Publication date: August 21, 2008
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Publication number: 20080145404
    Abstract: Connective tissue regenerative compositions and methods of repairing and regenerating connective tissue using such compositions are provided. The compositions generally comprise a bioactive hydrogel matrix comprising a polypeptide, such as gelatin, and a long chain carbohydrate, such as dextran. The hydrogel matrix may further include polar amino acids, as well as additional beneficial additives. Advantageously, the compositions include further components, such as osteoinductive or osteoconductive materials, medicaments, stem or progenitor cells, and three-dimensional structural frameworks. The compositions are useful for regenerating connective tissue, and can be administered to an area having injury to, or a loss of, connective tissue, such as bone, cartilage, tendon, and ligament.
    Type: Application
    Filed: February 28, 2008
    Publication date: June 19, 2008
    Inventors: Ronald Stewart Hill, Richard Chris Klann, Francis V. Lamberti
  • Patent number: 7303814
    Abstract: The present invention is directed to a stabilized bioactive hydrogel matrix coating for substrates, such as medical devices. The invention provides a coated substrate comprising a substrate having a surface, and a bioactive hydrogel matrix layer overlying the surface of the medical device, the hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component, the first and second high molecular weight components each being selected from the group consisting of polyglycans and polypeptides, wherein at least one of the first and second high molecular weight components is immobilized (e.g., by covalent cross-linking) to the surface of the substrate.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: December 4, 2007
    Assignee: Encelle, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Publication number: 20030232746
    Abstract: The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
    Type: Application
    Filed: February 21, 2003
    Publication date: December 18, 2003
    Applicant: Encelle, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill
  • Publication number: 20030232198
    Abstract: The present invention is directed to a stabilized bioactive hydrogel matrix coating for substrates, such as medical devices. The invention provides a coated substrate comprising a substrate having a surface, and a bioactive hydrogel matrix layer overlying the surface of the medical device, the hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component, the first and second high molecular weight components each being selected from the group consisting of polyglycans and polypeptides, wherein at least one of the first and second high molecular weight components is immobilized (e.g., by covalent cross-linking) to the surface of the substrate.
    Type: Application
    Filed: February 21, 2003
    Publication date: December 18, 2003
    Applicant: Encelle, Inc.
    Inventors: Francis V. Lamberti, Richard Chris Klann, Ronald Stewart Hill