Patents by Inventor Francis W. Richey

Francis W. Richey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942606
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance (e.g., energy efficiency, Coulombic efficiency, and/or the like). One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: March 26, 2024
    Assignee: Eos Energy Technology Holdings, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Publication number: 20240097205
    Abstract: Provided is a terminal assembly for an electrochemical battery comprising a terminal connector; a conductive flat-plate with an electrically conducting perimeter; an electrically insulating tape member; and a terminal bipolar electrode plate. The electrically insulating tape member is in between the conductive flat-plate and the terminal bipolar electrode plate such that the electrically insulating tape member does not cover the entire surface area of the conductive flat-plate. The electrically conducting perimeter enables bi-directional uniform current flow through the conductive flat-plate between the terminal connector and the terminal bipolar electrode plate. Also provided is a battery frame member for a static rechargeable battery comprising a liquid diversion system; a gutter; a sealing member; a gas channel; and a ventilation hole.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Applicant: Eos Energy Technology Holdings, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey, Daniel Friberg, Fabian Bruegger, Mateo S. Williams
  • Patent number: 11876187
    Abstract: Provided is a terminal assembly for an electrochemical battery comprising a terminal connector; a conductive flat-plate with an electrically conducting perimeter; an electrically insulating tape member; and a terminal bipolar electrode plate. The electrically insulating tape member is in between the conductive flat-plate and the terminal bipolar electrode plate such that the electrically insulating tape member does not cover the entire surface area of the conductive flat-plate. The electrically conducting perimeter enables bi-directional uniform current flow through the conductive flat-plate between the terminal connector and the terminal bipolar electrode plate. Also provided is a battery frame member for a static rechargeable battery comprising a liquid diversion system; a gutter; a sealing member; a gas channel; and a ventilation hole.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 16, 2024
    Assignee: Eos Energy Technology Holdings, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey, Daniel Friberg, Fabian Bruegger, Mateo S. Williams
  • Publication number: 20230178755
    Abstract: A static battery with a non-conductive elastomeric or thermoplastic housing. The, battery housing is adapted to receive at least one anode assembly, at least one cathode assembly, and at least one bipolar electrode assembly. At least the bipolar electrode assembly is formed from a conductive plastic resin that is formed as a CPE sheet. A carbon material is affixed to the CPE sheet to form the bipolar electrode. The at least one cathode assembly, the at least one anode assembly and the at least one bipolar electrode assembly are received into the battery box such that a liquid, and/or gas seal is formed, between electrode assemblies. The battery housing has slots into which the electrode assemblies are received. When the electrode assemblies are received into the housing, cells are formed by the cooperation of the electrode assemblies and the battery housing. The cells are then filled with electrolyte such as zinc bromide and a lid is placed on the battery box.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 8, 2023
    Applicant: Eos Energy Technology Holdings, LLC
    Inventors: Francis W. Richey, Nicholas Szamreta, Gregory Plichta, Cyril Fernandez Lourdnathan Joseph, Vasanthan Mani
  • Publication number: 20230107407
    Abstract: Provided is an electrolyte for use in a secondary zinc halide electrochemical cell comprising: from about 20 wt. % to about 70 wt. % of a zinc halide of formula ZnY2 or any combination of zinc halides of formula ZnY2, wherein Y is a halide selected from fluoride, chloride, bromide, iodide, or any combination thereof; from about 10 wt. % to about 79 wt. % of H2O; and from about 0.5 wt. % to about 20 wt. % of one or more zinc additives. The one or more zinc additives comprises a first zinc additive, wherein the first zinc additive is a salt that is not a zinc halide and comprises an anion with a van der Waals volume of greater than about 65 ?3. Also provided is a secondary zinc halide battery comprising at least one electrochemical cell comprising at least one bipolar electrode and the zinc halide electrolyte. Also provided is a secondary zinc halide battery comprising a zinc metal reservoir.
    Type: Application
    Filed: October 6, 2022
    Publication date: April 6, 2023
    Applicant: Eos Energy Technology Holdings, LLC
    Inventors: Rebecca Smith, Francis W. Richey, Lukas Fuchshofen
  • Patent number: 11469423
    Abstract: The present invention is directed to methods of making a nanofiber-nanoparticle network to be used as electrodes of fuel cells. The method comprises electrospinning a polymer-containing material on a substrate to form nanofibers and electrospraying a catalyst-containing material on the nanofibers on the same substrate. The nanofiber-nanoparticle network made by the methods is suitable for use as electrodes in fuel cells.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: October 11, 2022
    Assignee: Drexel University
    Inventors: Yossef A. Elabd, Francis W. Richey, Kevin H. Wujcik
  • Publication number: 20220069360
    Abstract: Provided is a terminal assembly for an electrochemical battery comprising a terminal connector; a conductive flat-plate with an electrically conducting perimeter; an electrically insulating tape member; and a terminal bipolar electrode plate. The electrically insulating tape member is in between the conductive flat-plate and the terminal bipolar electrode plate such that the electrically insulating tape member does not cover the entire surface area of the conductive flat-plate. The electrically conducting perimeter enables bi-directional uniform current flow through the conductive flat-plate between the terminal connector and the terminal bipolar electrode plate. Also provided is a battery frame member for a static rechargeable battery comprising a liquid diversion system; a gutter; a sealing member; a gas channel; and a ventilation hole.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 3, 2022
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey, Daniel Friberg, Fabian Bruegger, Mateo S. Williams
  • Patent number: 11211607
    Abstract: Bipolar electrodes comprising a carbon felt loaded with a polymer material and a nanocarbon material are described herein. The bipolar electrodes are useful in electrochemical cells. In particular, the loaded carbon felt can be used in bipolar electrodes of zinc-halide electrolyte batteries. Processes for manufacturing the loaded carbon felt are also described, involving contacting (e.g., dipping) a carbon felt in a mixture of solvent, polymer material and nanocarbon material.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: December 28, 2021
    Assignee: Eos Energy Storage LLC
    Inventor: Francis W. Richey
  • Publication number: 20210119265
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance (e.g., energy efficiency, Coulombic efficiency, and/or the like). One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Application
    Filed: November 10, 2020
    Publication date: April 22, 2021
    Applicant: EOS Energy Storage, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Patent number: 10892524
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance (e.g., energy efficiency, Coulombic efficiency, and/or the like). One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 12, 2021
    Assignee: Eos Energy Storage, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Publication number: 20200388844
    Abstract: Bipolar electrodes comprising a carbon felt loaded with a polymer material and a nanocarbon material are described herein. The bipolar electrodes are useful in electrochemical cells. In particular, the loaded carbon felt can be used in bipolar electrodes of zinc-halide electrolyte batteries. Processes for manufacturing the loaded carbon felt are also described, involving contacting (e.g., dipping) a carbon felt in a mixture of solvent, polymer material and nanocarbon material.
    Type: Application
    Filed: November 27, 2018
    Publication date: December 10, 2020
    Inventor: Francis W. Richey
  • Publication number: 20200350593
    Abstract: The present invention is directed to methods of making a nanofiber-nanoparticle network to be used as electrodes of fuel cells. The method comprises electrospinning a polymer-containing material on a substrate to form nanofibers and electrospraying a catalyst-containing material on the nanofibers on the same substrate. The nanofiber-nanoparticle network made by the methods is suitable for use as electrodes in fuel cells.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 5, 2020
    Inventors: Yossef A. Elabd, Francis W. Richey, Kevin H. Wujcik
  • Publication number: 20190198881
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance. One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Publication number: 20190131662
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance (e.g., energy efficiency, Coulombic efficiency, and/or the like). One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Application
    Filed: March 29, 2017
    Publication date: May 2, 2019
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Patent number: 10276872
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance. One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: April 30, 2019
    Assignee: Eos Energy Storage, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Publication number: 20140051013
    Abstract: The present invention is directed to methods of making a nanofiber-nanoparticle network to be used as electrodes of fuel cells. The method comprises electrospinning a polymer-containing material on a substrate to form nanofibers and electrospraying a catalyst-containing material on the nanofibers on the same substrate. The nanofiber-nanoparticle network made by the methods is suitable for use as electrodes in fuel cells.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Inventors: Yossef A. Elabd, Francis W. Richey, Kevin H. Wujcik