Patents by Inventor Francisco Javier Hernández Beltrán

Francisco Javier Hernández Beltrán has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10300466
    Abstract: The present invention relates to a process for modifying the physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, for the interest of the oil refining industry, in which the conversion of oil heavy fractions into lighter fractions, with a higher commercial value, is carried out. The process produces a modified Faujasite Y-type zeolite, with lower sodium content, as low as 75%, than that of the starting Faujasite Y-type zeolite. A mesoporous material associated with the modified Faujasite Y-type zeolite has an average pore size ranging from 2 to 100 nm, having a bimodal or multimodal pore size distribution. The proportion of modified Faujasite Y-type zeolite with respect to the meso-porous material associated to the Faujasite Y type Zeolite can be regulated through the process operation conditions.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: May 28, 2019
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Hector Armendariz Herrera, Maria de Lourdes Alejandra Guzman Castillo, Francisco Javier Hernandez Beltran, Patricia Perez Romo, Jaime Sanchez Valente, Jose Marie Maurice Julien Fripiat
  • Publication number: 20160375427
    Abstract: The present invention relates to a process for modifying the physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, for the interest of the oil refining industry, in which the conversion of oil heavy fractions into lighter fractions, with a higher commercial value, is carried out. The process produces a modified Faujasite Y-type zeolite, with lower sodium content, as low as 75%, than that of the starting Faujasite Y-type zeolite. A mesoporous material associated with the modified Faujasite Y-type zeolite has an average pore size ranging from 2 to 100 nm, having a bimodal or multimodal pore size distribution. The proportion of modified Faujasite Y-type zeolite with respect to the meso-porous material associated to the Faujasite Y type Zeolite can be regulated through the process operation conditions.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Francisco Javier HERNANDEZ BELTRAN, Patricia PEREZ ROMO, Jaime SANCHEZ VALENTE, Jose Marie Maurice JULIEN FRIPIAT
  • Patent number: 9492817
    Abstract: The physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, are modified by contact with a short-chain polyol and mixture with an ammonium salt followed by thermal treatment to produce a modified Faujasite Y-type zeolite with sodium content as low as 75% below that of the starting Faujasite Y-type zeolite. The modified Faujasite Y-type zeolite is dispersed in a mesoporous material having an average pore size ranging from 2 to 100 nm.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 15, 2016
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Héctor Armendáriz Herrera, María de Lourdes Alejandra Guzmán Castillo, Francisco Javier Hernández Beltrán, Patricia Pérez Romo, Jaime Sánchez Valente, José Marie Maurice Julien Fripiat
  • Publication number: 20160082424
    Abstract: The present invention relates to the preparation of Multimetallic Anionic Clays (MACs) through a simple method, which are then shaped by spray-drying into microspheres with adequate mechanical properties, suitable to be fluidized. The microspheres are appropriate for application as additives in the Fluid Catalytic Cracking (FCC) process, i.e. blended with the conventional catalyst, to in situ remove sulfur oxides (SOx) from the combustion gases produced in the regeneration stage of the FCC process, when cracking sulfur-containing hydrocarbon feeds. An oxidation promoter is added to the MACs in order to promote the oxidation of SO2 to SO3, a key step in SOx removal, providing more efficient and versatile materials, which are apt to be used in atmospheres with variable oxygen concentration.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Jaime SANCHEZ VALENTE, Roberto QUINTANA SOLORZANO, Lazaro Moises GARCIA MORENO, Rodolfo Juventino MORA VALLEJO, Francisco Javier HERNANDEZ BELTRAN
  • Patent number: 8716159
    Abstract: A method for eliminating silicon or silicon compounds in alumina based materials without destroying such alumina based materials enabling reutilization particularly in catalysts for hydrotreating processes, comprising: a) mixing alumina based solid material which contains silicon with an alcohol extraction agent at a temperature between 10 and 300° C., for 10 minutes to 96 hours to form a mixture; b) separating solids from the mixture by centrifugation, decantation or filtration to obtain separated solids; c) washing the separated solids with at least one of water, alcohol or an ammonium hydroxide solution to form washed solids; and d) drying the washed solids to obtain regenerated alumina based solid material.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: May 6, 2014
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Patricia Pérez Romo, José Marie Maurice Julien Fripiat, Luis Miguel Rodríguez Otal, Pedro Martín Vega Merino, María de Lourdes Alejandra Guzmán Castillo, Candido Aguilar Barrera, Héctor Armendáriz Herrera, Francisco Javier Hernández Beltrán
  • Publication number: 20130171058
    Abstract: The present invention relates to a process for modifying the physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, for the interest of the oil refining industry, in which the conversion of oil heavy fractions into lighter fractions, with a higher commercial value, is carried out. More specifically, the present invention relates to a process for producing in a single step: a) A modified Faujasite Y-type zeolite, with a lower sodium content, as low as 75%, than that of the starting Faujasite Y-type zeolite.
    Type: Application
    Filed: May 13, 2011
    Publication date: July 4, 2013
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Héctor Armendáriz Herrera, Maria de Lourdes Alejandra Guzmán Castillo, Francisco Javier Hernández Beltrán, Patricia Pérez Romo, Jaime Sánchez Valente, José Marie Maurice Julien Fripiat
  • Publication number: 20120067778
    Abstract: The present invention relates to the preparation of Multimetallic Anionic Clays (MACs) through a simple method, which are then shaped by spray-drying into microspheres with adequate mechanical properties, suitable to be fluidized. The microspheres are appropriate for application as additives in the Fluid Catalytic Cracking (FCC) process, i.e. blended with the conventional catalyst, to in situ remove sulfur oxides (SOx) from the combustion gases produced in the regeneration stage of the FCC process, when cracking sulfur-containing hydrocarbon feeds. An oxidation promoter is added to the MACs in order to promote the oxidation of SO2 to SO3, a key step in SOx removal, providing more efficient and versatile materials, which are apt to be used in atmospheres with variable oxygen concentration.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 22, 2012
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jaime SÁNCHEZ VALENTE, Roberto QUINTANA SOLÓRZANO, Lázaro Moisés GARCÍA MORENO, Rodolfo Juventino MORA VALLEJO, Francisco Javier HERNÁNDEZ BELTRÁN
  • Publication number: 20120040822
    Abstract: The present invention refers to a method for eliminating silicon or silicon compounds that are contained in alumina based materials without destroying such alumina based materials allowing for their reutilization, its main application is being the regeneration of alumina based catalyst contaminated with silicon, which are used in hydro-treating processes in the oil industry for sulfur elimination and silicon removal from process streams. It is important to note that the procedures and/or conventional methods known so far for the elimination and removal of silicon contained in alumina based materials, use inorganic acids or their mixture in a digestion process which modifies the properties of alumina and of any other element contained in the material, thus destroying the alumina and disabling their reutilization.
    Type: Application
    Filed: December 9, 2009
    Publication date: February 16, 2012
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Patricia Pérez Romo, José Marie Maurice Julien Fripiat, Luis Miguel Rodríguez Otal, Pedro Martín Vega Merino, María de Lourdes Alejandra Guzmán Castillo, Candido Aguilar Barrera, Héctor Armendáriz Herrera, Francisco Javier Hernández Beltrán