Patents by Inventor Francisco Javier Santos

Francisco Javier Santos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240047457
    Abstract: A power semiconductor device includes at a first side and electrically isolated from first and second load terminals, first control electrodes for controlling a load current in first semiconductor channel structures formed in an active region at the first side, and at a second side and electrically isolated from the first and second load terminals, second control electrodes for controlling the load current in second semiconductor channel structures formed in the active region at the second side. At the second side and in a contiguous area of modified control (AMC) belonging to the active region and having a lateral extension of at least 30% of a thickness of a semiconductor body of the device, either no second control electrodes are provided or the second control electrodes are less effective in removing free charge carriers out of the power semiconductor device than the second control electrodes outside the AMC.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 8, 2024
    Inventors: Francisco Javier Santos Rodriguez, Roman Baburske, Hans-Joachim Schulze, Daniel Schlögl
  • Patent number: 11887894
    Abstract: A method for processing a wide band gap semiconductor wafer includes: depositing a support layer including semiconductor material at a back side of a wide band gap semiconductor wafer, the wide band gap semiconductor wafer having a band gap larger than the band gap of silicon; depositing an epitaxial layer at a front side of the wide band gap semiconductor wafer; and splitting the wide band gap semiconductor wafer along a splitting region to obtain a device wafer comprising at least a part of the epitaxial layer, and a remaining wafer comprising the support layer.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Günter Denifl, Tobias Hoechbauer, Martin Huber, Wolfgang Lehnert, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 11881406
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming a carbon structure on a handle substrate at a first surface of the handle substrate. The method further includes attaching a first surface of a semiconductor substrate to the first surface of the handle substrate. The method further includes processing the semiconductor substrate and performing a separation process to separate the handle substrate from the semiconductor substrate. The separation process comprises modifying the carbon structure.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 11881397
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Iris Moder, Bernhard Goller, Tobias Franz Wolfgang Hoechbauer, Roland Rupp, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 11856711
    Abstract: A method of forming a current measurement device includes providing a glass substrate having first and second substantially planar surfaces that are opposite one another, forming a plurality of through-vias in the glass substrate that each extend between the first and second substantially planar surfaces, and forming conductive tracks on the glass substrate that connect adjacent ones of the through-vias together. Forming the plurality of through-vias includes applying radiation to the glass substrate, and the conductive tracks and the through-vias collectively form a coil structure in the glass substrate.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: December 26, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Alexander Breymesser, Francisco Javier Santos Rodriguez, Klaus Sobe
  • Publication number: 20230395394
    Abstract: A method of forming a semiconductor device includes: forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate; increasing the porosity of the first semiconductor layer; first annealing the first semiconductor layer in an atmosphere including an inert gas; forming a second semiconductor layer on the first semiconductor layer; and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer. Additional methods of forming a semiconductor device are described.
    Type: Application
    Filed: August 22, 2023
    Publication date: December 7, 2023
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Bernhard Goller, Matthias Kuenle, Helmut Oefner, Francisco Javier Santos Rodriguez, Stephan Voss
  • Publication number: 20230361196
    Abstract: A method includes: providing a layer of porous silicon carbide supported by a silicon carbide substrate; providing a layer of epitaxial silicon carbide on the layer of porous silicon carbide; forming semiconductor devices in the layer of epitaxial silicon carbide; and separating the silicon carbide substrate from the layer of epitaxial silicon carbide at the layer of porous silicon carbide. The layer of porous silicon carbide includes dopants defining a resistivity of the layer of porous silicon carbide. The resistivity of the layer of porous silicon carbide is different from a resistivity of the silicon carbide substrate. Additional methods are described.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Hans-Joachim Schulze, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20230317456
    Abstract: A method of manufacturing a semiconductor device in a semiconductor body having a first surface and a second surface is proposed. Semiconductor device elements are formed in the semiconductor body by processing the semiconductor body at the first surface. A wiring area is formed over the first surface of the semiconductor body. The semiconductor body is attached to a carrier via the wiring area. Thereafter, ions are implanted through the second surface into the semiconductor body. The ions are ions of a doping element, or ions, which induce doping by complex formation, or ions of a heavy metal. A surface region of the semiconductor body at the second surface is irradiated with a plurality of laser pulses. Thereafter, the carrier is removed from the semiconductor body.
    Type: Application
    Filed: March 29, 2023
    Publication date: October 5, 2023
    Inventors: Moriz Jelinek, Hans-Joachim Schulze, Werner Schustereder, Daniel Schlögl, Francisco Javier Santos Rodriguez
  • Publication number: 20230290828
    Abstract: An insulated gate bipolar transistor (IGBT) is proposed. The IGBT includes a semiconductor body having a first surface and a second surface. The IGBT further includes an active area and an edge termination area that at least partly surrounds the active area. The active area includes a first part of an active IGBT area and a second part of the active IGBT area. The IGBT further includes a contact on the second surface of the semiconductor body. A minimum vertical distance between the contact in the first part of the active IGBT area and a reference level at the first surface is larger than a minimum vertical distance between the contact in the second part of the active IGBT area and the reference level at the first surface.
    Type: Application
    Filed: March 2, 2023
    Publication date: September 14, 2023
    Inventors: Matteo Dainese, Alim Karmous, Christian Philipp Sandow, Francisco Javier Santos Rodriguez, Daniel Schlögl, Hans-Joachim Schulze
  • Patent number: 11742215
    Abstract: A method of forming a semiconductor device, including forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate, increasing the porosity of the first semiconductor layer, first annealing the first semiconductor layer at a temperature of at least 1050° C., forming a second semiconductor layer on the first semiconductor layer and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: August 29, 2023
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Bernhard Goller, Matthias Kuenle, Helmut Oefner, Francisco Javier Santos Rodriguez, Stephan Voss
  • Patent number: 11735642
    Abstract: A method includes providing a layer of porous silicon carbide supported by a silicon carbide substrate, providing a layer of epitaxial silicon carbide on the layer of porous silicon carbide, forming a plurality of semiconductor devices in the layer of epitaxial silicon carbide, and separating the substrate from the layer of epitaxial silicon carbide at the layer of porous silicon carbide. Additional methods are described.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 22, 2023
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20230207673
    Abstract: A power semiconductor device includes: a drift region; a plurality of IGBT cells each having a plurality of trenches extending into the drift region along a vertical direction and laterally confining at least one active mesa which includes an upper section of the drift region; and an electrically floating barrier region of an opposite conductivity type as the drift region and spatially confined, in and against the vertical direction, by the drift region. A total volume of all active mesas is divided into first and second shares, the first share not laterally overlapping with the barrier region and the second share laterally overlapping with the barrier region. The first share carries the load current at least within a range of 0% to 100% of a nominal load current. The second share carries the load current if the load current exceeds at least 0.5% of the nominal load current.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 29, 2023
    Inventors: Antonio Vellei, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 11688997
    Abstract: A laser assembly (1710) for generating an assembly output beam (1712) includes a laser subassembly (1716) including a first laser module (1716A) and a second laser module (1716B), a transform assembly (1744), and a beam combiner (1746). The first laser module (1716A) emits a plurality of spaced apart first laser beams (1720A). The second laser module (1716B) emits a plurality of spaced apart second laser beams (1720B). The transform assembly (1744) is positioned in a path of the laser beams (1720A) (1720B). The transform assembly (1744) directs the laser beams (1720A) (1720B) to spatially overlap at a focal plane of the transform assembly (1744). The beam combiner (1746) is positioned at the focal plane that combines the lasers beams (1720A) (1720B) to provide a combination beam. The laser beams (1720A) (1720B) directed by the transform assembly (1744) impinge on the beam combiner (1746) at different angles.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: June 27, 2023
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Alexander Jason Whitmore, Michael Pushkarsky, David P. Caffey, Francisco Javier Santos, Justin Motander Jones
  • Publication number: 20230154978
    Abstract: A semiconductor device and a method of forming a semiconductor device are provided. In an embodiment, the semiconductor device comprises a device region, an edge termination region surrounding the device region, a first metal feature in the edge termination region, a first conformal ion diffusion barrier layer over the first metal feature, and a first conformal chemical protection layer over the first conformal ion diffusion barrier layer.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 18, 2023
    Inventors: Carsten SCHAEFFER, Patrick HANEKAMP, Oliver HUMBEL, Angelika KOPROWSKI, Wolfgang LEHNERT, Francisco Javier SANTOS RODRIGUEZ
  • Publication number: 20230125859
    Abstract: A method of manufacturing a semiconductor device in a semiconductor body having a first surface and a second surface is proposed. The method includes implanting protons through the second surface into the semiconductor body. The method further includes implanting ions through the second surface into the semiconductor body. The ions are ions of a non-doping element having an atomic number of at least 9. Thereafter, the method further includes processing the semiconductor body by thermal annealing.
    Type: Application
    Filed: October 27, 2022
    Publication date: April 27, 2023
    Inventors: Daniel Schlögl, Hans-Joachim Schulze, Moriz Jelinek, Francisco Javier Santos Rodriguez
  • Publication number: 20230127556
    Abstract: A method of processing a semiconductor wafer includes: forming one or more epitaxial layers over a first main surface of the semiconductor wafer; forming one or more porous layers in the semiconductor wafer or in the one or more epitaxial layers, wherein the semiconductor wafer, the one or more epitaxial layers and the one or more porous layers collectively form a substrate; forming doped regions of a semiconductor device in the one or more epitaxial layers; and after forming the doped regions of the semiconductor device, separating a non-porous part of the semiconductor wafer from a remainder of the substrate along the one or more porous layers.
    Type: Application
    Filed: May 12, 2022
    Publication date: April 27, 2023
    Inventors: Bernhard Goller, Alexander Binter, Tobias Hoechbauer, Martin Huber, Iris Moder, Matteo Piccin, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 11626371
    Abstract: One or more semiconductor structures and/or methods for forming support structures for semiconductor structures are provided. A first porosification layer is formed over a semiconductor substrate. A first epitaxial layer is formed over the first porosification layer. A second porosification layer is formed from a first portion of the first epitaxial layer and a support structure is formed from a second portion of the first epitaxial layer.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 11, 2023
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Francisco Javier Santos Rodriguez, Markus Harfmann
  • Patent number: 11594621
    Abstract: A method of processing a power semiconductor device includes: providing a semiconductor body with a drift region of a first conductivity type; forming a plurality of trenches extending into the semiconductor body along a vertical direction and arranged adjacent to each other along a first lateral direction; providing a mask arrangement at the semiconductor body, the mask arrangement having a lateral structure according to which some of the trenches are exposed and at least one of the trenches is covered by the mask arrangement along the first lateral direction; forming, below bottoms of the exposed trenches, a plurality of doping regions of a second conductivity type complementary to the first conductivity type; removing the mask arrangement; and extending the plurality of doping regions in parallel to the first lateral direction such that the plurality of doping regions overlap and form a barrier region of the second conductivity type adjacent to the bottoms of the exposed trenches.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Antonio Vellei, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 11581428
    Abstract: A power semiconductor device includes an active cell region with a drift region of a first conductivity type, a plurality of IGBT cells arranged within the active cell region, each of the IGBT cells includes at least one trench that extends into the drift, an edge termination region surrounding the active cell region, a transition region arranged between the active cell region and the edge termination region, at least some of the IGBT cells are arranged within or extend into the transition region, a barrier region of a second conductivity type, the barrier region is arranged within the active cell region and in contact with at least some of the trenches of the IGBT cells and does not extend into the transition region, and a first load terminal and a second load terminal, the power semiconductor device is configured to conduct a load current along a vertical direction between.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 14, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Markus Beninger-Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Francisco Javier Santos Rodriguez, Antonio Vellei, Caspar Leendertz, Christian Philipp Sandow
  • Patent number: 11576259
    Abstract: A carrier configured to be attached to a semiconductor substrate via a first surface comprises a continuous carbon structure defining a first surface of the carrier, and a reinforcing material constituting at least 2 vol-% of the carrier.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Andre Brockmeier, Tobias Franz Wolfgang Hoechbauer, Gerhard Metzger-Brueckl, Matteo Piccin, Francisco Javier Santos Rodriguez