Patents by Inventor Franck Emmanuel Gounou

Franck Emmanuel Gounou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200315781
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes determining at least one photic phenomenon experienced by the subject after implantation of the IOL; and applying a plurality of laser pulses to the IOL, the laser pulses being configured to produce, by refractive index writing on the IOL, a phase shift in the IOL to compensate for the photic phenomenon.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315780
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method includes applying a plurality of laser pulses to the IOL. The laser pulses can be configured to produce, by refractive index writing on the IOL, a predetermined change in phase profile of the IOL to increase spectacle independence.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315779
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL) that has a non-zero residual spherical error that requires an estimated diffractive power addition in the IOL. In some embodiments, a plurality of laser pulses are applied to the IOL, the laser pulses being configured to produce, by refractive index writing on the IOL, the estimated diffractive power addition to correct for the residual spherical error.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200315782
    Abstract: Systems and methods for improving vision of a subject implanted with an intraocular lens (IOL). In some embodiments, a method of treating an ocular disease of a subject having an implanted intraocular lens (IOL) includes determining visual needs of a subject that are associated with an ocular disease of the subject determining a pattern of a plurality of pulses of radiation to apply, by refractive index writing, and applying the plurality of pulses of radiation to the one or more selected areas of the IOL.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Robert Rosen, Franck Emmanuel Gounou, Carmen Canovas Vidal, Aixa Alarcon Heredia
  • Publication number: 20200214829
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Patent number: 10588738
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 17, 2020
    Assignee: AMO GRONINGEN B.V.
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri
  • Publication number: 20170258578
    Abstract: Lenses and methods are provided for improving peripheral and/or central vision for patients who suffer from certain retinal conditions that reduce central vision or patients who have undergone cataract surgery. The lens is configured to improve vision by having an optic configured to focus light incident along a direction parallel to an optical axis at the fovea in order to produce a functional foveal image. The optic is configured to focus light incident on the patient's eye at an oblique angle with respect to the optical axis at a peripheral retinal location disposed at a distance from the fovea, the peripheral retinal location having an eccentricity between ?30 degrees and 30 degrees. The image quality at the peripheral retinal location is improved by reducing at least one optical aberration at the peripheral retinal location. The method for improving vision utilizes ocular measurements to iteratively adjust the shape factor of the lens to reduce peripheral refractive errors.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Robert Rosén, Franck Emmanuel Gounou, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie H. Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia, Dora Sellitri