Patents by Inventor Francois H. Fabreguette

Francois H. Fabreguette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130124
    Abstract: An electronic device comprising a cell region comprising stacks of alternating dielectric materials and conductive materials. A pillar region is adjacent to the cell region and comprises storage node segments adjacent to adjoining oxide materials and adjacent to a tunnel region. The storage node segments are separated by a vertical portion of the tunnel region. A high-k dielectric material is adjacent to the conductive materials of the cell region and to the adjoining oxide materials of the pillar region. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
    Type: Application
    Filed: May 25, 2023
    Publication date: April 18, 2024
    Inventors: Shyam Surthi, Richard J. Hill, Gurtej S. Sandhu, Byeung Chul Kim, Francois H. Fabreguette, Chris M. Carlson, Michael E. Koltonski, Shane J. Trapp
  • Publication number: 20230335493
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and conductive rails laterally adjacent to the conductive structures of the stack structure. The conductive rails comprise a material composition that is different than a material composition of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: John D. Hopkins, Jordan D. Greenlee, Francois H. Fabreguette, John A. Smythe
  • Publication number: 20230262981
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. The wordline levels have conductive terminal ends within control gate regions. The control gate regions are vertically spaced from one another by first insulative regions which include first insulative material. Charge-storage material is laterally outward of the conductive terminal ends, and is configured as segments. The segments of the charge-storage material are arranged one atop another and are vertically spaced from one another by second insulative regions which include second insulative material. The second insulative material has a different dielectric constant than the first insulative material. Charge-tunneling material extends vertically along the stack, and is adjacent to the segments of the charge-trapping material. Channel material extends vertically along the stack, and is adjacent to the charge-tunneling material.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Purnima Narayanan, Shyam Surthi
  • Patent number: 11715692
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and conductive rails laterally adjacent to the conductive structures of the stack structure. The conductive rails comprise a material composition that is different than a material composition of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: August 1, 2023
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, Jordan D. Greenlee, Francois H. Fabreguette, John A. Smythe
  • Patent number: 11672118
    Abstract: An electronic device comprising a cell region comprising stacks of alternating dielectric materials and conductive materials. A pillar region is adjacent to the cell region and comprises storage node segments adjacent to adjoining oxide materials and adjacent to a tunnel region. The storage node segments are separated by a vertical portion of the tunnel region. A high-k dielectric material is adjacent to the conductive materials of the cell region and to the adjoining oxide materials of the pillar region. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Richard J. Hill, Gurtej S. Sandhu, Byeung Chul Kim, Francois H. Fabreguette, Chris M. Carlson, Michael E. Koltonski, Shane J. Trapp
  • Patent number: 11672120
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. The wordline levels have conductive terminal ends within control gate regions. The control gate regions are vertically spaced from one another by first insulative regions which include first insulative material. Charge-storage material is laterally outward of the conductive terminal ends, and is configured as segments. The segments of the charge-storage material are arranged one atop another and are vertically spaced from one another by second insulative regions which include second insulative material. The second insulative material has a different dielectric constant than the first insulative material. Charge-tunneling material extends vertically along the stack, and is adjacent to the segments of the charge-trapping material. Channel material extends vertically along the stack, and is adjacent to the charge-tunneling material.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Byeung Chui Kim, Francois H. Fabreguette, Richard J. Hill, Purnima Narayanan, Shyam Surthi
  • Patent number: 11631697
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. A channel material extends vertically along the stack. The channel material includes a semiconductor composition and has first segments alternating with second segments. The first segments are adjacent the wordline levels and the second segments are adjacent the insulative levels. The first segments have a first dopant distribution and the second segments have a second dopant distribution which is different from the first dopant distribution. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: April 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Byeung Chul Kim, Richard J. Hill, Francois H. Fabreguette, Gurtej S. Sandhu
  • Patent number: 11557608
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions and include second regions proximate to the control gate regions. High-k dielectric structures are directly against the control gate regions and extend entirely across the insulative levels. Charge-blocking material is adjacent to the high-k dielectric structures. Charge-storage material is adjacent to the charge-blocking material. The charge-storage material is configured as segments which are vertically stacked one atop another, and which are vertically spaced from one another. Gate-dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the stack and is adjacent to the gate-dielectric material. Some embodiments include integrated assemblies, and methods of forming integrated assemblies.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: January 17, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Shyam Surthi
  • Publication number: 20220173123
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. A channel material extends vertically along the stack. The channel material includes a semiconductor composition and has first segments alternating with second segments. The first segments are adjacent the wordline levels and the second segments are adjacent the insulative levels. The first segments have a first dopant distribution and the second segments have a second dopant distribution which is different from the first dopant distribution. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Shyam Surthi, Byeung Chul Kim, Richard J. Hill, Francois H. Fabreguette, Gurtej S. Sandhu
  • Patent number: 11289501
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. A channel material extends vertically along the stack. The channel material includes a semiconductor composition and has first segments alternating with second segments. The first segments are adjacent the wordline levels and the second segments are adjacent the insulative levels. The first segments have a first dopant distribution and the second segments have a second dopant distribution which is different from the first dopant distribution. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 29, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Byeung Chul Kim, Richard J. Hill, Francois H. Fabreguette, Gurtej S. Sandhu
  • Publication number: 20220077176
    Abstract: An electronic device comprising a cell region comprising stacks of alternating dielectric materials and conductive materials. A pillar region is adjacent to the cell region and comprises storage node segments adjacent to adjoining oxide materials and adjacent to a tunnel region. The storage node segments are separated by a vertical portion of the tunnel region. A high-k dielectric material is adjacent to the conductive materials of the cell region and to the adjoining oxide materials of the pillar region. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Inventors: Shyam Surthi, Richard J. Hill, Gurtej S. Sandhu, Byeung Chul Kim, Francois H. Fabreguette, Chris M. Carlson, Michael E. Koltonski, Shane J. Trapp
  • Publication number: 20220051980
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and conductive rails laterally adjacent to the conductive structures of the stack structure. The conductive rails comprise a material composition that is different than a material composition of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: John D. Hopkins, Jordan D. Greenlee, Francois H. Fabreguette, John A. Smythe
  • Publication number: 20220005930
    Abstract: Apparatus (e.g., semiconductor devices) include stack structures with at least one conductive region and at least one nonconductive material. A multidielectric spacer is adjacent the at least one conductive region and comprises first and second dielectric materials. The first dielectric material, adjacent the at least one conductive region, includes silicon and nitrogen. The second dielectric material, adjacent the first dielectric material, comprises silicon-carbon bonds and defines a substantially straight, vertical, outer sidewall. In methods to form such apparatus, the first dielectric material may be formed with selectivity on the at least one conductive region, and the second dielectric material may be formulated and formed to exhibit etch resistance.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Inventors: John A. Smythe, Silvia Borsari, Francois H. Fabreguette, Sutharsan Ketharanathan
  • Publication number: 20210366927
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions and include second regions proximate to the control gate regions. High-k dielectric structures are directly against the control gate regions and extend entirely across the insulative levels. Charge-blocking material is adjacent to the high-k dielectric structures. Charge-storage material is adjacent to the charge-blocking material. The charge-storage material is configured as segments which are vertically stacked one atop another, and which are vertically spaced from one another. Gate-dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the stack and is adjacent to the gate-dielectric material. Some embodiments include integrated assemblies, and methods of forming integrated assemblies.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Shyam Surthi
  • Publication number: 20210327898
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. The wordline levels have conductive terminal ends within control gate regions. The control gate regions are vertically spaced from one another by first insulative regions which include first insulative material. Charge-storage material is laterally outward of the conductive terminal ends, and is configured as segments. The segments of the charge-storage material are arranged one atop another and are vertically spaced from one another by second insulative regions which include second insulative material. The second insulative material has a different dielectric constant than the first insulative material. Charge-tunneling material extends vertically along the stack, and is adjacent to the segments of the charge-trapping material. Channel material extends vertically along the stack, and is adjacent to the charge-tunneling material.
    Type: Application
    Filed: May 24, 2021
    Publication date: October 21, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Purnima Narayanan, Shyam Surthi
  • Patent number: 11127830
    Abstract: Apparatus (e.g., semiconductor devices) include stack structures with at least one conductive region and at least one nonconductive material. A multidielectric spacer is adjacent the at least one conductive region and comprises first and second dielectric materials. The first dielectric material, adjacent the at least one conductive region, includes silicon and nitrogen. The second dielectric material, adjacent the first dielectric material, comprises silicon-carbon bonds and defines a substantially straight, vertical, outer sidewall. In methods to form such apparatus, the first dielectric material may be formed with selectivity on the at least one conductive region, and the second dielectric material may be formulated and formed to exhibit etch resistance.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 21, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, Silvia Borsari, Francois H. Fabreguette, Sutharsan Ketharanathan
  • Patent number: 11107830
    Abstract: Some embodiments include a NAND memory array having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include control gate regions and include second regions proximate to the control gate regions. High-k dielectric structures are directly against the control gate regions and extend entirely across the insulative levels. Charge-blocking material is adjacent to the high-k dielectric structures. Charge-storage material is adjacent to the charge-blocking material. The charge-storage material is configured as segments which are vertically stacked one atop another, and which are vertically spaced from one another. Gate-dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the stack and is adjacent to the gate-dielectric material. Some embodiments include integrated assemblies, and methods of forming integrated assemblies.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 31, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H Fabreguette, Richard J. Hill, Shyam Surthi
  • Patent number: 11037956
    Abstract: Some embodiments include a memory array having a vertical stack of alternating insulative levels and wordline levels. The wordline levels have conductive terminal ends within control gate regions. The control gate regions are vertically spaced from one another by first insulative regions which include first insulative material. Charge-storage material is laterally outward of the conductive terminal ends, and is configured as segments. The segments of the charge-storage material are arranged one atop another and are vertically spaced from one another by second insulative regions which include second insulative material. The second insulative material has a different dielectric constant than the first insulative material. Charge-tunneling material extends vertically along the stack, and is adjacent to the segments of the charge-trapping material. Channel material extends vertically along the stack, and is adjacent to the charge-tunneling material.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Byeung Chul Kim, Francois H. Fabreguette, Richard J. Hill, Purnima Narayanan, Shyam Surthi
  • Patent number: 10964536
    Abstract: Methods, apparatuses, and systems related to formation of an atomic layer of germanium (Ge) on a substrate material are described. An example method includes introducing, into a semiconductor processing chamber housing a substrate material having a high aspect ratio, a reducing agent, and introducing, into the semiconductor processing chamber, a germanium amidinate precursor. The example method further includes forming an atomic layer of germanium on the substrate material resulting from a reaction of the reducing agent and the germanium amidinate precursor.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: March 30, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Francois H. Fabreguette, Paul A. Paduano, Gurtej S. Sandhu, John A. Smythe, III, Matthew N. Rocklein
  • Patent number: 10937654
    Abstract: A method of doping a silicon-containing material. The method comprises forming at least one opening in a silicon-containing material and conformally forming a doped germanium material in the at least one opening and adjacent to the silicon-containing material. A dopant of the doped germanium material is transferred into the silicon-containing material. Methods of forming a semiconductor device are also disclosed, as are semiconductor devices comprising a doped silicon-containing material.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: March 2, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Francois H. Fabreguette, John A. Smythe, Witold Kula