Patents by Inventor Frank Alexis
Frank Alexis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150362500Abstract: X-ray/optical imaging materials are described and techniques as may be used for sensitive and high spatial resolution chemical and biophysical imaging in tissue. The technique uses high spatial resolution deeply penetrating X-rays to excite scintillators which convert the energy to a different frequency, e.g., visible light frequencies. The emitted spectrum is then modulated by a chemical indicating element such as an indicator dye held in optical communication with the scintillators in order to detect specific concentrations in the local area. The materials can include a magnetic element in conjunction with the scintillator and chemical indicating element. The materials can incorporate a biologically active agent for delivery.Type: ApplicationFiled: July 9, 2015Publication date: December 17, 2015Inventors: Jeffrey Anker, Chen Hongyu, Frank Alexis
-
Publication number: 20150290344Abstract: Biodegradable, radio-opaque polyesters and poly(ester amides) are described herein. The polyesters contain a plurality of radio-opaque agents or radio-opaque agent-containing moieties that are covalently bound along or from the polymer backbone. The agents/moieties may be bound to the termini of the polymer provided they are bound within the polyester backbone as well. The polyester can be aliphatic or aromatic. The polyester and poly(ester amide) is substituted with a plurality of radio-opaque graft agents or prepared from an appropriate radio-opaque monomer agent. The materials can be used for any application where a radio-opaque material is desired or necessary. The materials can be used to form, in whole or in part, a medical device, or coating thereon or therein.Type: ApplicationFiled: April 10, 2015Publication date: October 15, 2015Inventors: Frank Alexis, Daniel C. Whitehead, Brooke A. Van Horn
-
Patent number: 8932595Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface having a plurality of nicotine moieties. The invention provides pharmaceutical compositions comprising nanocarriers. The present invention provides methods of designing, manufacturing, and using nanocarriers and pharmaceutical compositions thereof. For example, the present invention describes nanocarriers capable of eliciting an immune response and the production of anti-nicotine antibodies.Type: GrantFiled: October 9, 2009Date of Patent: January 13, 2015Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Matteo Iannacone, Ulrich von Andrian, Omid C. Farokhzad, Frank Alexis, Pamela Basto, Jinjun Shi, Elliott Ashley Moseman, Robert S. Langer, Elena Tonti
-
Patent number: 8906381Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising such nanocarriers. The present invention provides methods of designing, manufacturing, and using such nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: October 9, 2009Date of Patent: December 9, 2014Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., President and Fellows of Harvard CollegeInventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20140127301Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: November 19, 2013Publication date: May 8, 2014Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Publication number: 20140037736Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: October 4, 2013Publication date: February 6, 2014Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich H. von Andrian, Elena Tonti
-
Patent number: 8637028Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: October 9, 2009Date of Patent: January 28, 2014Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, The Brigham and Women's HospitalInventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Patent number: 8591905Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface having a plurality of nicotine moieties. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof. For example, the present invention nanocarriers capable of eliciting an immune response and the production of anti-nicotine antibodies.Type: GrantFiled: April 22, 2009Date of Patent: November 26, 2013Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College, Massachusetts Institute of TechnologyInventors: Ulrich von Andrian, Omid C. Farokhzad, Frank Alexis, Matteo Iannacone, Pamela Basto, Jinjun Shi, Elliott Ashley Moseman, Robert S. Langer, Elena Tonti
-
Publication number: 20130287857Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides vaccine nanocarriers capable of stimulating an immune response in T cells and/or B cells, in some embodiments, comprising at least one immunomodulatory agent, and optionally comprising at last one targeting moiety and optionally at least one immunostimulatory agent. The invention provides pharmaceutical compositions comprising inventive vaccine nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive vaccine nanocarriers and pharmaceutical compositions thereof. The invention provides methods of prophylaxis and/or treatment of diseases, disorders, and conditions comprising administering at least one inventive vaccine nanocarrier to a subject in need thereof.Type: ApplicationFiled: March 15, 2013Publication date: October 31, 2013Inventors: Ulrich H. von Andrian, Omid C. Farokhzad, Robert S. Langer, Tobias Junt, Elliott Ashley Moseman, Liangfang Zhang, Pamela Basto, Matteo Iannacone, Frank Alexis
-
Patent number: 8562998Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising nanocarriers. The present invention provides methods of designing, manufacturing, and using nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: October 9, 2009Date of Patent: October 22, 2013Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20130236533Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides vaccine nanocarriers capable of stimulating an immune response in T cells and/or B cells, in some embodiments, comprising at least one immunomodulatory agent, and optionally comprising at last one targeting moiety and optionally at least one immunostimulatory agent. The invention provides pharmaceutical compositions comprising inventive vaccine nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive vaccine nanocarriers and pharmaceutical compositions thereof. The invention provides methods of prophylaxis and/or treatment of diseases, disorders, and conditions comprising administering at least one inventive vaccine nanocarrier to a subject in need thereof.Type: ApplicationFiled: March 15, 2013Publication date: September 12, 2013Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, IMMUNE DISEASE INSTITUTE, PRESIDENT AND FELLOWS OF HARVARD COLLEGE, PARTNERS HEALTHCARE SYSTEM, INC.Inventors: Ulrich H. von Andrian, Omid C. Farokhzad, Robert S. Langer, Tobias Junt, Elliott Ashley Moseman, Liangfang Zhang, Pamela Basto, Matteo Iannacone, Frank Alexis
-
Publication number: 20130236504Abstract: Disclosed are delivery systems that can be used for treating cancer. The delivery systems include a delivery vehicle in conjunction with a chemo-adjuvant. The chemo-adjuvant can enhance the efficacy of a therapeutic agent that can be delivered in conjunction with the delivery vehicle or can be delivered independently of the delivery vehicle.Type: ApplicationFiled: March 5, 2013Publication date: September 12, 2013Applicants: Medical University of South Carolina, Clemson UniversityInventors: Frank Alexis, Bruce Frankel
-
Publication number: 20130129790Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: October 12, 2012Publication date: May 23, 2013Inventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich Von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Patent number: 8343497Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: April 22, 2009Date of Patent: January 1, 2013Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College, Massachusetts Institute of TechnologyInventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Patent number: 8343498Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: April 22, 2009Date of Patent: January 1, 2013Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., President and Fellows of Harvard CollegeInventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Patent number: 8277812Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: GrantFiled: April 22, 2009Date of Patent: October 2, 2012Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.Inventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20120087890Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising such nanocarriers. The present invention provides methods of designing, manufacturing maceutical compositions thereof.Type: ApplicationFiled: October 9, 2009Publication date: April 12, 2012Applicant: Massachusetts Institute of TechnologyInventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20110268805Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: October 9, 2009Publication date: November 3, 2011Inventors: Frank Alexis, Matteo Iannacone, Jinjin Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
-
Publication number: 20110268804Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising nanocarriers. The present invention provides methods of designing, manufacturing, and using nanocarriers and pharmaceutical compositions thereof.Type: ApplicationFiled: October 9, 2009Publication date: November 3, 2011Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
-
Publication number: 20100303723Abstract: The present invention provides drug delivery systems comprising FcRn binding partners (e.g., FcRn binding partner, Fc fragment) associated with a particle or an agent to be delivered. Inventive drug delivery systems allow for binding to the FcRn receptor and transcytosis into and/or through a cell or cell layer. Inventive systems are useful for delivering therapeutic agents across the endothelium of blood vessels or the epithelium of an organ.Type: ApplicationFiled: November 20, 2007Publication date: December 2, 2010Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE BRIGHAM AND WOMEN'S HOSPITAL, INC.Inventors: Omid C. Farokhzad, Frank Alexis, Timothy T. Kuo, Eric Pridgen, Aleksandar Filip Radovic-Moreno, Robert S. Langer