Patents by Inventor Frank Altmann

Frank Altmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160202126
    Abstract: A method for localizing a hot spot (27) in a sample (12), in particular an encapsulated device under test (DUT), by using lock-in thermography (LIT), where at least one heat source (23) of an electrical circuit is buried within the sample (12) and generated the hot spot (27) upon flow of current therein, comprises applying a non-harmonic excitation wave test signal at a lock-in frequency to the electrical circuit of the sample (12) to activate the heat source (23) for generating the hot spot (27); imaging the sample (12) using an infrared sensor (16) to obtain IR images of the sample (12) while the non-harmonic test signal is applied to the electrical circuit; and detecting a thermal response signal obtained from the imaging, the thermal response signal being in correlation to the thermal heat propagation within the sample (12).
    Type: Application
    Filed: May 30, 2014
    Publication date: July 14, 2016
    Inventors: Christian Schmidt, Raiko Meinhardt-Wildegger, Frank Altmann, Falk Naumann, Rudolf Schlangen
  • Patent number: 9322715
    Abstract: A non-destructive approach for the 3D localization of buried hot spots in electronic device architectures by use of Lock-in Thermography (LIT). The 3D analysis is based on the principles of thermal wave propagation through different material layers and the resulting phase shift/thermal time delay. With more complex multi level stacked die architectures it is necessary to acquire multiple LIT results at different excitation frequencies for precise hot spot depth localization. Additionally, the use of multiple time-resolved thermal waveforms, measured in a minimized field of view on top of the hot spot location, can be used to speed up the data acquisition. The shape of the resulting waveforms can be analyzed to further increase the detection accuracy and confidence level.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: April 26, 2016
    Assignees: DCG SYSTEMS, INC., FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Frank Altmann, Christian Schmidt, Rudolf Schlangen, Herve Deslandes
  • Publication number: 20140346360
    Abstract: A non-destructive approach for the 3D localization of buried hot spots in electronic device architectures by use of Lock-in Thermography (LIT). The 3D analysis is based on the principles of thermal wave propagation through different material layers and the resulting phase shift/thermal time delay. With more complex multi level stacked die architectures it is necessary to acquire multiple LIT results at different excitation frequencies for precise hot spot depth localization. Additionally, the use of multiple time-resolved thermal waveforms, measured in a minimized field of view on top of the hot spot location, can be used to speed up the data acquisition. The shape of the resulting waveforms can be analyzed to further increase the detection accuracy and confidence level.
    Type: Application
    Filed: June 2, 2014
    Publication date: November 27, 2014
    Applicants: DCG Systems, Inc., Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Frank Altmann, Christian Schmidt, Rudolf Schlangen, Herve Deslandes
  • Patent number: 8742347
    Abstract: A non-destructive approach for the 3D localization of buried hot spots in electronic device architectures by use of Lock-in Thermography (LIT). The 3D analysis is based on the principles of thermal wave propagation through different material layers and the resulting phase shift/thermal time delay. With more complex multi level stacked die architectures it is necessary to acquire multiple LIT results at different excitation frequencies for precise hot spot depth localization. Additionally, the use of multiple time-resolved thermal waveforms, measured in a minimized field of view on top of the hot spot location, can be used to speed up the data acquisition. The shape of the resulting waveforms can be analyzed to further increase the detection accuracy and confidence level.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 3, 2014
    Assignees: DCG Systems, Inc., Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.
    Inventors: Frank Altmann, Christian Schmidt, Rudolf Schlangen, Herve Deslandes
  • Publication number: 20140001361
    Abstract: A method is described for producing a micro-gripper, which comprises a base body and a gripping body connected integrally to the base body, which projects beyond the base body and provides a receptacle slot on a free end area in such a way that a micrometer-scale or sub-micrometer-scale object may be clamped in the receptacle slot for gripping and holding, as well as a micro-gripper according to the species.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: CARL ZEISS MICROSCOPY GMBH
    Inventors: Christian GROSSE, Frank ALTMANN, Michel SIMON, Hilmar HOFFMEISTER, Detlef RIEMER
  • Patent number: 8530855
    Abstract: A method is described for producing a micro-gripper, which comprises a base body and a gripping body connected integrally to the base body, which projects beyond the base body and provides a receptacle slot on a free end area in such a way that a micrometer-scale or sub-micrometer-scale object may be clamped in the receptacle slot for gripping and holding, as well as a micro-gripper according to the species.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: September 10, 2013
    Assignees: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Carl Zeiss Microscopy GmbH
    Inventors: Christian Grosse, Frank Altmann, Michél Simon, Hilmar Hoffmeister, Detlef Riemer
  • Publication number: 20110297829
    Abstract: A non-destructive approach for the 3D localization of buried hot spots in electronic device architectures by use of Lock-in Thermography (LIT). The 3D analysis is based on the principles of thermal wave propagation through different material layers and the resulting phase shift/thermal time delay. With more complex multi level stacked die architectures it is necessary to acquire multiple LIT results at different excitation frequencies for precise hot spot depth localization. Additionally, the use of multiple time-resolved thermal waveforms, measured in a minimized field of view on top of the hot spot location, can be used to speed up the data acquisition. The shape of the resulting waveforms can be analyzed to further increase the detection accuracy and confidence level.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 8, 2011
    Inventors: Frank ALTMANN, Christian Schmidt, Rudolf Schlangen, Herve Deslandes
  • Publication number: 20100032581
    Abstract: A method is described for producing a micro-gripper, which comprises a base body and a gripping body connected integrally to the base body, which projects beyond the base body and provides a receptacle slot on a free end area in such a way that a micrometer-scale or sub-micrometer-scale object may be clamped in the receptacle slot for gripping and holding, as well as a micro-gripper according to the species.
    Type: Application
    Filed: March 9, 2007
    Publication date: February 11, 2010
    Inventors: Christian Grosse, Frank Altmann, Michél Simon, Hilmar Hoffmeister, Detlef Riemer