Patents by Inventor Frank Bergmann

Frank Bergmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969755
    Abstract: Described herein are a method for transferring an embossed structure, which includes at least the steps (1-i) and (2-i) or (1-ii) and (2-ii), where steps (1-i) and (2-i) or (1-ii) and (2-ii) are carried out using an embossing tool (P1) including at least one embossing die (p1), where the embossing die (p1) of the embossing tool (P1) is pretreated, before the implementation of step (2-i) or before the implementation of step (1-ii), with at least one organic solvent and/or at least one reactive diluent, and also a method of using a corresponding pretreated embossing tool (P1) including at least one embossing die (p1) for the purpose of transferring an embossed structure in such a way.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: April 30, 2024
    Assignee: BASF COATINGS GMBH
    Inventors: Jan-Bernd Kues, Susanne Piontek, Joerg Exner, Birgit Kleine-Bley, Alberto Garcia Martin, Jens-Henning Noatschk, Michael Lorenz, Robert Von Der Aa, Frank Bergmann, Wilfried Schipper
  • Publication number: 20240010668
    Abstract: The present disclosure provides 3? protected nucleotides, including those 3? protected nucleotides having a detectable tag. Systems and methods of sequencing nucleic acids using the 3? protected nucleotides are also disclosed, such as the sequencing of a nucleic acid using a nanopore or the sequencing of a nucleic acid via sequencing-by-synthesis.
    Type: Application
    Filed: August 11, 2023
    Publication date: January 11, 2024
    Inventors: Frank Bergmann, Peter Crisalli, Dieter Heindl, Omid Khakshoor, Meng Taing
  • Patent number: 11865858
    Abstract: The present disclosure relates to a method for transferring an embossed structure to a surface of a coating composition (B2a), which includes the steps (1-i) and (2-i) or (1-ii) and (2-ii) and also the steps (3) and optionally (4), where the steps (1-i) and (2-i) or (1-ii) and (2-ii) are performed using a composite (F1B1) which is employed as an embossing die (p2) of an embossing tool (P2) and which is composed of a substrate (F1) and of an at least partially embossed and at least partially cured coating (B1), and the coating composition (B1a) used for producing (B1) of the composite (F1B1) is a radiation-curable coating composition of defined constitution. Also described herein is a composite (F1B1).
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: January 9, 2024
    Assignee: BASF COATINGS GMBH
    Inventors: Jan-Bernd Kues, Susanne Piontek, Joerg Exner, Birgit Kleine-Bley, Robert von der Aa, Michael Lorenz, Frank Bergmann, Wilfried Schipper, Sven Olle Krabbenborg, Joerg Duennewald
  • Publication number: 20230332223
    Abstract: Molecules may be analyzed (e.g., sequencing of nucleic acid molecules) by tunneling recognition at a tunneling junction. Embodiments of the present invention may allow detecting individual nucleotides and the sequencing of a nucleic acid molecule using a tunneling junction. By labeling a specific nucleotide with a moiety, tunneling junctions may generate a signal with a suitable signal-to-noise ratio. The tunneling recognition uses a tunneling current that is mostly through the moiety rather than mostly through the nucleotide or a portion of the molecule of interest. Because a single nucleotide can be detected with a signal with a suitable signal-to-noise ratio resulting from the tunneling current passing through the moiety, embodiments of the present invention may allow for fast detection of nucleotides using a tunneling current.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Yann ASTIER, Juraj TOPOLANCIK, Hannes KUCHELMEISTER, Frank BERGMANN, Dieter HEINDL, Nikolaus Klaus-Peter STENGELE
  • Patent number: 11773130
    Abstract: The present disclosure provides 3? protected nucleotides, including those 3? protected nucleotides having a detectable tag. Systems and methods of sequencing nucleic acids using the 3? protected nucleotides are also disclosed, such as the sequencing of a nucleic acid using a nanopore or the sequencing of a nucleic acid via sequencing-by-synthesis.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: October 3, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Frank Bergmann, Peter Crisalli, Dieter Heindl, Omid Khakshoor, Meng Taing
  • Patent number: 11739378
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: August 29, 2023
    Assignees: Roche Sequencing Solutions, Inc., Roche Molecular Systems, Inc.
    Inventors: Frank Bergmann, Christoph Seidel, Andrew Trans, Dmitriy Gremyachinskiy, Hannes Kuchelmeister, Lars Hillringhaus
  • Patent number: 11718870
    Abstract: Molecules may be analyzed (e.g., sequencing of nucleic acid molecules) by tunneling recognition at a tunneling junction. Embodiments of the present invention may allow detecting individual nucleotides and the sequencing of a nucleic acid molecule using a tunneling junction. By labeling a specific nucleotide with a moiety, tunneling junctions may generate a signal with a suitable signal-to-noise ratio. The tunneling recognition uses a tunneling current that is mostly through the moiety rather than mostly through the nucleotide or a portion of the molecule of interest. Because a single nucleotide can be detected with a signal with a suitable signal-to-noise ratio resulting from the tunneling current passing through the moiety, embodiments of the present invention may allow for fast detection of nucleotides using a tunneling current.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 8, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Yann Astier, Juraj Topolancik, Hannes Kuchelmeister, Frank Bergmann, Dieter Heindl, Nikolaus Klaus-Peter Stengele
  • Publication number: 20230159584
    Abstract: The present invention provides a new building block for peptide synthesis, which introduces a cleavage site that can be used to generate cleavable fragments subsequent to a peptide sequence.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 25, 2023
    Inventors: Frank BERGMANN, Simon Ferdinand LOIBL, Sebastian Johannes POMPLUN
  • Publication number: 20230128368
    Abstract: The present disclosure relates to a set of at least 100 single-stranded oligonucleotide probes directed against (or complementary to) portions of a genomic target sequence of interest. The present disclosure also relates to a method of detecting a genomic target sequence of interest using the set of oligonucleotide probes and a method of generating the set of oligonucleotide probes. Further, the present disclosure relates to a kit comprising the set of oligonucleotide probes and at least one further component.
    Type: Application
    Filed: July 14, 2022
    Publication date: April 27, 2023
    Inventors: Frank Bergmann, Walter Eberle, Thomas Fischer, Herbert von der Eltz
  • Publication number: 20230061438
    Abstract: The present disclosure provides a method for sequencing target polynucleotide molecules. In some embodiments, the present disclosure provides a method of sequencing by synthesis where different subsets of nucleotide-conjugate complexes are sequentially formed and detected during each iterative extension of a plurality of nascent nucleic acid copy strands, where each nascent nucleic acid copy strand is complementary to one of a plurality of target polynucleotide molecules. In some embodiments, the plurality of target polynucleotide molecules are arrayed on a solid support.
    Type: Application
    Filed: December 17, 2020
    Publication date: March 2, 2023
    Inventors: Yann Astier, Frank Bergmann, Dieter Heindl
  • Patent number: 11548911
    Abstract: The present invention provides a new building block for peptide synthesis, which introduces a cleavage site that can be used to generate cleavable fragments subsequent to a peptide sequence.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: January 10, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Frank Bergmann, Simon Ferdinand Loibl, Sebastian Johannes Pomplun
  • Publication number: 20220348604
    Abstract: The present disclosure provides 3? protected nucleotides, including those 3? protected nucleotides having a detectable tag. Systems and methods of sequencing nucleic acids using the 3? protected nucleotides are also disclosed, such as the sequencing of a nucleic acid using a nanopore or the sequencing of a nucleic acid via sequencing-by-synthesis.
    Type: Application
    Filed: July 6, 2022
    Publication date: November 3, 2022
    Inventors: Frank Bergmann, Peter Crisalli, Dieter Hiendl, Omid Khakshoor, Meng Taing
  • Publication number: 20220314272
    Abstract: Described herein are a method for transferring an embossed structure, which includes at least the steps (1-i) and (2-i) or (1-ii) and (2-ii), where steps (1-i) and (2-i) or (1-ii) and (2-ii) are carried out using an embossing tool (P1) including at least one embossing die (p1), where the embossing die (p1) of the embossing tool (P1) is pretreated, before the implementation of step (2-i) or before the implementation of step (1-ii), with at least one organic solvent and/or at least one reactive diluent, and also a method of using a corresponding pretreated embossing tool (P1) including at least one embossing die (p1) for the purpose of transferring an embossed structure in such a way.
    Type: Application
    Filed: June 3, 2020
    Publication date: October 6, 2022
    Inventors: Jan-Bernd Kues, Susanne Piontek, Joerg Exner, Birgit Kleine-Bley, Alberto Garcia Martin, Jens-Henning Noatschk, Michael Lorenz, Robert Von Der Aa, Frank Bergmann, Wilfried Schipper
  • Patent number: 11440933
    Abstract: The present disclosure provides 3? protected nucleotides, including those 3? protected nucleotides having a detectable tag. Systems and methods of sequencing nucleic acids using the 3? protected nucleotides are also disclosed, such as the sequencing of a nucleic acid using a nanopore or the sequencing of a nucleic acid via sequencing-by-synthesis.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: September 13, 2022
    Assignee: ROCHE SEQUENCING SOLUTIONS, INC.
    Inventors: Frank Bergmann, Peter Crisalli, Dieter Hiendl, Omid Khakshoor, Meng Taing
  • Patent number: 11421266
    Abstract: The present disclosure relates to a set of at least 100 single-stranded oligonucleotide probes directed against (or complementary to) portions of a genomic target sequence of interest. The present disclosure also relates to a method of detecting a genomic target sequence of interest using the set of oligonucleotide probes and a method of generating the set of oligonucleotide probes. Further, the present disclosure relates to a kit comprising the set of oligonucleotide probes and at least one further component.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: August 23, 2022
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Frank Bergmann, Walter Eberle, Thomas Fischer, Herbert von der Eltz
  • Publication number: 20220195497
    Abstract: The present report relates to hybridizing single-stranded (ss-) oligonucleotides which entirely consist of locked nucleic acid (LNA) monomers. The present document shows hybridization experiments with pairs of entirely complementary ss-oligonucleotides which fail to form a duplex within a given time interval. The present report provides methods to identify such incompatible oligonucleotide pairs. In another aspect, the present report provides pairs of complementary ss-oligonucleotides which are capable of rapid duplex formation. The present report also provides methods to identify and select compatible oligonucleotide pairs. In yet another aspect the present report provides use of compatible oligonucleotide pairs as binding partners in binding assays, e.g. receptor-based assays.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 23, 2022
    Inventors: Frank BERGMANN, Dieter HEINDL, Michael SCHRAEML, JOHANNES STOECKEL
  • Patent number: 11293060
    Abstract: The present invention relates to improving the processing rate of a sequencing reaction, for example in a nanopore sequencing reaction, by means of using improved nucleoside-tags. The tags are linked to the nucleoside phosphate via a Pictet Spengler reaction. Exemplary sequencing reactions that are improved by the present methods include nanopore-based nucleic acid sequencing-by-synthesis reactions.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: April 5, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Frank Bergmann, Ian Quang Chau, Peter Crisalli, Hannah Marie Kallewaard-Lum, Hannes Kuchelmeister, Sebastian Johannes Pomplun, Hasham Saqib, Christian Wellner
  • Publication number: 20220090189
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Application
    Filed: March 15, 2021
    Publication date: March 24, 2022
    Applicant: Roche Sequencing Solutions, Inc.
    Inventors: Frank BERGMANN, Christoph SEIDEL, Andrew TRANS, Dmitriy GREMYACHINSKIY, Hannes KUCHELMEISTER, Lars HILLRINGHAUS
  • Patent number: 11280791
    Abstract: In one aspect, the present disclosure provides a system and method for the identification and characterization of a transglutaminase. Further, the present disclosure provides transglutaminase enzymes for forming isopeptide bonds, methods of forming isopeptide bonds in the presence of transglutaminases, and substrate tags for use with transglutaminases. In another aspect, the present disclosure provides glutamine-containing substrates (or Q-tag substrates) that are more resistant to proteases/clipping and therefore, more stable, than other Q-tag substrates, and their uses in substrate tags for cross-linking to an amine-donor tag via an isopeptide bond mediated by a microbial transglutaminase.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 22, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Thomas Albert, Frank Bergmann, Victor Lyamichev, Mohamed Yosry Hassan Mohamed, Tobias Oelschlaegel, Jigar Patel, Michael Schraeml, Wojtek Steffen, Thomas Streidl
  • Patent number: 11268120
    Abstract: According to one aspect, the present disclosure provides a method of identifying a substrate of a transglutaminase using a peptide array comprising a plurality of peptides. The method includes the steps of contacting the peptides in the peptide array with the transglutaminase, allowing the transglutaminase to bind to the peptides, and identifying the substrate of the transglutaminase.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: March 8, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Thomas Albert, Frank Bergmann, Victor Lyamichev, Jigar Patel, Michael Schraeml, Wojtek Steffen