Patents by Inventor Frank Bergner
Frank Bergner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230013905Abstract: The present invention relates to an apparatus (10) for correcting computer tomography (“CT”) X-ray data acquired at high relative pitch, the apparatus comprising: an input unit (20); a processing unit (30); and an output unit (40). The input unit is configured to provide the processing unit with CT X-ray data of a body part of a person acquired at high relative pitch. The processing unit is configured to determine CT slice reconstruction data of the body part of the person with no or reduced high relative pitch operation reconstruction artefacts using a machine learning algorithm. The machine learning algorithm was trained on the basis of CT slice reconstruction data, and wherein the CT slice reconstruction data comprised first CT slice reconstruction data with high relative pitch reconstruction artefacts and comprised second CT slice reconstruction data with less, less severe, or no high relative pitch reconstruction artefacts.Type: ApplicationFiled: December 17, 2020Publication date: January 19, 2023Inventors: FRANK BERGNER, MICHAEL GRASS, THOMAS HEIKO STEHLE
-
Publication number: 20230000458Abstract: An imaging system (MIS), optionally a medical imaging system, with wireless communication capability and related method. The imaging system comprises a gantry (RG) rotatable around a rotation axis. The gantry includes a detector device (D) capable of recording, in plural spatial positions, measurement data in relation to a subject (such as a patient) (PAT) to be imaged. The system also includes a radio transmitter (TX) for generating a directed radio beam propagatable along a propagation axis to transmit the measurement data to a radio receiver (RX). The radio transmitter (TX) is arranged at the rotatable gantry and is operable so that the propagation direction intersects the rotation axis in a location that is situated away from the rotatable gantry.Type: ApplicationFiled: December 3, 2020Publication date: January 5, 2023Inventors: FRANK BERGNER, CLAAS BONTUS, KLAUS ERHARD, NIKOLAS DAVID SCHNELLBÄCHER, DIRK SCHÄFER, SVEN PETER PREVRHAL, PETER VERNICKEL
-
Patent number: 11222404Abstract: In a method and system for reconstructing computed tomography image data in which CT image data is de-noised. Then simulated noise is added, followed by another de-noising step to estimate the bias. Then, the estimated bias information is used to correct the original de-noised image data to arrive at second pass image data.Type: GrantFiled: March 24, 2017Date of Patent: January 11, 2022Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Thomas Koehler, Bernhard Johannes Brendel, Rolf Dieter Bippus, Frank Bergner
-
Publication number: 20210217140Abstract: In a method and system for reconstructing computed tomography image data in which CT image data is de-noised. Then simulated noise is added, followed by another de-noising step to estimate the bias. Then, the estimated bias information is used to correct the original de-noised image data to arrive at second pass image data.Type: ApplicationFiled: March 24, 2017Publication date: July 15, 2021Inventors: Thomas KOEHLER, Bernhard Johannes BRENDEL, Rolf Dieter BIPPUS, Frank BERGNER
-
Patent number: 10984564Abstract: An imaging system (400) includes a radiation source (408) configured to emit X-ray radiation, a detector array (410) configured to detected X-ray radiation and generate projection data indicative thereof, and a first processing chain (418) configured to reconstruct the projection data and generate a noise only image. A method includes receiving projection data produced by an imaging system and processing the projection data with a first processing chain configured to reconstruct the projection data and generate a noise only image. A processor is configured to: scan an object or subject with an x-ray imaging system and generating projection data, process the projection data with a first processing chain configured to reconstruct the projection data and generate a noise only image, process the projection data with a second processing chain configured to reconstruct the projection data and generate a structure image, and de-noise the structure image based on the noise only image.Type: GrantFiled: December 6, 2017Date of Patent: April 20, 2021Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Frank Bergner, Bernhard Johannes Brendel, Thomas Koehler, Kevin Martin Brown
-
Patent number: 10983071Abstract: The present invention relates to a photon scanning apparatus comprising a photon source (2) to emit a photon beam (4), a photon detector (6) to detect photons emitted from the photon source (2). The photon source (2) is adapted to emit the photon beam (4) in accordance with a predetermined pulse width modulation scheme at a predetermined flux rate, wherein the pulse width modulation scheme defines pulse widths of the photon beam (4) for respective positions of the photon source (2) and the photon detector around a central axis (R) and an object to be scanned. The photon detector (6) is adapted to start detecting photons with a delay relative to the photon source starting to emit photons and to finish detecting photons prior to the photon source stopping to emit photons. The photon scanning apparatus thus only has to be calibrated for the predetermined flux rate.Type: GrantFiled: May 2, 2018Date of Patent: April 20, 2021Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Heiner Daerr, Roland Proksa, Frank Bergner
-
Patent number: 10872445Abstract: The present invention relates to an apparatus for tomosynthesis image reconstruction. It is described to provide (210) a first projection image data set and a second projection image data set acquired after acquisition of the first projection image data set, wherein, the first projection image data set comprises first projection data, and the second projection image data set comprises second projection data, and wherein the first projection image data set is useable for the reconstruction of a tomosynthesis image of at least a region of interest of a body part and wherein the second projection image data set is useable for the reconstruction of a tomosynthesis image of at least the region of interest of the body part. A subset of the first projection data is selected (220).Type: GrantFiled: November 3, 2017Date of Patent: December 22, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Harald Sepp Heese, Klaus Erhard, Frank Bergner, Ruediger Grewer, Hans Barschdorf, Thomas Buelow
-
Patent number: 10839488Abstract: The present invention relates to a device (100) for denoising a vector-valued image, the device (100) comprising: a generator (10), which is configured to generate an initial loss function (L_I) comprising at least one initial covariance matrix (ICM) defining a model of correlated noise for each pixel of the vector-valued image; a processor (20), which is configured to provide a final loss function (L_F) comprising a set of at least one final covariance matrix (FCM) based on the initial loss function by modifying at least one submatrix and/or at least one matrix element of the initial covariance matrix (ICM); and a noise-suppressor (30), which is configured to denoise the vector-valued image using the final loss function (L_F) comprising the set of the at least one final covariance matrix (FCM).Type: GrantFiled: April 24, 2017Date of Patent: November 17, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Frank Bergner, Bernhard Johannes Brendel, Thomas Koehler
-
Patent number: 10827986Abstract: An image processing apparatus (IP) comprising an input port (IN) for receiving projection data through respective 3D locations in an imaging region, said projection date collected in a scan operation by an imaging apparatus (IM). An image segment generator (IGS) of said apparatus (IP) is configured to generate, based on said projection data, a first image segment for said 3D locations. A visualizer (VIZ) configured to effect displaying said first image segment on a display device before or whilst the image apparatus collects projection data for a different 3D location.Type: GrantFiled: December 15, 2016Date of Patent: November 10, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Klaus Erhard, Frank Bergner, Hanns-Ingo Maack
-
Publication number: 20200319121Abstract: The present invention relates to a photon scanning apparatus comprising a photon source (2) to emit a photon beam (4), a photon detector (6) to detect photons emitted from the photon source (2). The photon source (2) is adapted to emit the photon beam (4) in accordance with a predetermined pulse width modulation scheme at a predetermined flux rate, wherein the pulse width modulation scheme defines pulse widths of the photon beam (4) for respective positions of the photon source (2) and the photon detector around a central axis (R) and an object to be scanned. The photon detector (6) is adapted to start detecting photons with a delay relative to the photon source starting to emit photons and to finish detecting photons prior to the photon source stopping to emit photons. The photon scanning apparatus thus only has to be calibrated for the predetermined flux rate.Type: ApplicationFiled: May 2, 2018Publication date: October 8, 2020Inventors: Heiner DAERR, Roland PROKSA, Frank BERGNER
-
Patent number: 10762672Abstract: The present invention relates to a device for reconstructing an X-ray tomography image, the device comprising a reconstruction module, which is configured to utilize an ordered subset maximum likelihood optimization with a diagonal paraboloid approximation of a cost function for the reconstructing of the X-ray tomography image; and a calculation module, which is configured to calculate a pre-computable denominator term for the cost function for a plurality of subsets of projection data based on a distribution of diagonal denominator terms over the plurality of the subsets of the projection data.Type: GrantFiled: October 19, 2016Date of Patent: September 1, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Frank Bergner, Bernhard Johannes Brendel, Thomas Koehler
-
Patent number: 10515467Abstract: The present invention relates to an image reconstruction system for statistically reconstructing images from transmission measurements. The image reconstruction system comprises an update equation providing unit for providing an update equation based on an iterative statistical model. The update equation comprises a data term and a regularization term. The invention proposes to not modify the regularization term, but rather the weights with which individual measurements contribute are modified on a per image voxel and per measurement basis. This is achieved by modifying the contributions of each measurement by including an additional weight on a per image voxel/per measurement basis. The additional weight for each measurement is determined by calculating the noise perpendicular to each measurement ray at each voxel position and a voxel and measurement dependent weight for each measurement, and integrated into the update equation's data term.Type: GrantFiled: January 20, 2016Date of Patent: December 24, 2019Assignee: KININKLIJKE PHILIPS N.V.Inventors: Rolf Dieter Bippus, Frank Bergner
-
Publication number: 20190385345Abstract: An imaging system (400) includes a radiation source (408) configured to emit X-ray radiation, a detector array (410) configured to detected X-ray radiation and generate projection data indicative thereof, and a first processing chain (418) configured to reconstruct the projection data and generate a noise only image. A method includes receiving projection data produced by an imaging system and processing the projection data with a first processing chain configured to reconstruct the projection data and generate a noise only image. A processor is configured to: scan an object or subject with an x-ray imaging system and generating projection data, process the projection data with a first processing chain configured to reconstruct the projection data and generate a noise only image, process the projection data with a second processing chain configured to reconstruct the projection data and generate a structure image, and de-noise the structure image based on the noise only image.Type: ApplicationFiled: December 6, 2017Publication date: December 19, 2019Inventors: FRANK BERGNER, BERNHARD JOHANNES BRENDEL, THOMAS KOEHLER, KEVIN MARTIN BROWN
-
Publication number: 20190259187Abstract: The present invention relates to an apparatus for tomosynthesis image reconstruction. It is described to provide (210) a first projection image data set and a second projection image data set acquired after acquisition of the first projection image data set, wherein, the first projection image data set comprises first projection data, and the second projection image data set comprises second projection data, and wherein the first projection image data set is useable for the reconstruction of a tomosynthesis image of at least a region of interest of a body part and wherein the second projection image data set is useable for the reconstruction of a tomosynthesis image of at least the region of interest of the body part. A subset of the first projection data is selected (220).Type: ApplicationFiled: November 3, 2017Publication date: August 22, 2019Inventors: Harald Sepp HEESE, Klaus ERHARD, Frank BERGNER, Ruediger GREWER, Hans BARSCHDORF, Thomas BUELOW
-
Patent number: 10373349Abstract: The invention relates to an image generation apparatus (1) for generating an image of an object. A reconstruction unit (10) reconstructs the image based on provided measured projection values such that costs defined by a cost function are reduced, wherein the cost function depends on differences between calculated projection values, which have been determined by simulating a forward projection through the image, and the provided measured projection values, and wherein a degree of dependence of the cost function on a respective difference depends on the respective difference. This can allow for a consideration of a degree of disturbance of the measured projection values by motion and/or by an incomplete illumination of the object during the reconstruction process, which can lead to a reconstruction of an image having an improved image quality.Type: GrantFiled: March 18, 2015Date of Patent: August 6, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Thomas Koehler, Axel Thran, Frank Bergner, Bernhard Johannes Brendel, Rolf Dieter Bippus
-
Patent number: 10297049Abstract: An image processing system (IPS) and related method to transform different multi-modal or multi-contrast input images (u,v) into respective transformed images (U,V). The transformation may proceed iteratively to improve a regularized objective function. The regularization is via a regularizer function (R). The regularizer function (R) is computed from noise normalized gradients of the two or more transformed images (u,v).Type: GrantFiled: November 26, 2015Date of Patent: May 21, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Thomas Koehler, Bernhard Johannes Brendel, Frank Bergner
-
Publication number: 20190147628Abstract: The present invention relates to an image reconstruction system for statistically reconstructing images from transmission measurements. The image reconstruction system comprises an update equation providing unit for providing an update equation based on an iterative statistical model. The update equation comprises a data term and a regularization term. The invention proposes to not modify the regularization term, but rather the weights with which individual measurements contribute are modified on a per image voxel and per measurement basis. This is achieved by modifying the contributions of each measurement by including an additional weight on a per image voxel/per measurement basis. The additional weight for each measurement is determined by calculating the noise perpendicular to each measurement ray at each voxel position and a voxel and measurement dependent weight for each measurement, and integrated into the update equation's data term.Type: ApplicationFiled: January 20, 2016Publication date: May 16, 2019Inventors: Rolf Dieter BIPPUS, Frank BERGNER
-
Publication number: 20190122342Abstract: The present invention relates to a device (100) for denoising a vector-valued image, the device (100) comprising: a generator (10), which is configured to generate an initial loss function (L_I) comprising at least one initial covariance matrix (ICM) defining a model of correlated noise for each pixel of the vector-valued image; a processor (20), which is configured to provide a final loss function (L_F) comprising a set of at least one final covariance matrix (FCM) based on the initial loss function by modifying at least one submatrix and/or at least one matrix element of the initial covariance matrix (ICM); and a noise-suppressor (30), which is configured to denoise the vector-valued image using the fmal loss function (L_F) comprising the set of the at least one fmal covariance matrix (FCM).Type: ApplicationFiled: April 24, 2017Publication date: April 25, 2019Inventors: FRANK BERGNER, Bernhard Johannes BRENDEL, Thomas KOEHLER
-
Publication number: 20180360395Abstract: An image processing apparatus (IP) comprising an input port (IN) for receiving projection data through respective 3D locations in an imaging region, said projection date collected in a scan operation by an imaging apparatus (IM). An image segment generator (IGS) of said apparatus (IP) is configured to generate, based on said projection data, a first image segment for said 3D locations. A visualizer (VIZ) configured to effect displaying said first image segment on a display device before or whilst the image apparatus collects projection data for a different 3D location.Type: ApplicationFiled: December 15, 2016Publication date: December 20, 2018Inventors: Klaus ERHARD, FRANK BERGNER, Hanns-Ingo MAACK
-
Publication number: 20180286086Abstract: The present invention relates to a device for reconstructing an X-ray tomography image, the device comprising a reconstruction module, which is configured to utilize an ordered subset maximum likelihood optimization with a diagonal paraboloid approximation of a cost function for the reconstructing of the X-ray tomography image; and a calculation module, which is configured to calculate a pre-computable denominator term for the cost function for a plurality of subsets of projection data based on a distribution of diagonal denominator terms over the plurality of the subsets of the projection data.Type: ApplicationFiled: October 19, 2016Publication date: October 4, 2018Inventors: Frank BERGNER, Bernhard Johannes BRENDEL, Thomas KOEHLER