Patents by Inventor Frank Buellesfeld

Frank Buellesfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160122226
    Abstract: A method for producing ceramizable green glass components provided, as well as apparatus for performing such method and ceramizable green glass components producible by such method. The method is a redrawing process in which a preform is heated, in a deformation zone, to a temperature that enables redrawing of the glass. The deformation zone is particularly small, which permits redrawing of the ceramizable green glass bodies while avoiding ceramization during the redrawing. The method provides plate-like or sheet-like green glass components that have a particularly smooth surface.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Applicant: SCHOTT AG
    Inventors: Bernhard Hunzinger, Doris Moseler, Frank Büllesfeld, Ulrich Lange
  • Publication number: 20150274573
    Abstract: A method for the production of glass components, an apparatus for carrying out the method, and a glass component that is obtainable through the method are provided. The method is a drawing method wherein a forming zone of a preform is heated to a temperature that allows drawing of the glass. The method includes a forming zone of the preform that is very small. Thereby the width of the preform is decreased to a smaller extent than its thickness. The glass components that can be obtained by this method have very smooth surfaces.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 1, 2015
    Inventors: Frank Buellesfeld, Ulrich Lange, Ralf Biertuempfel, Lisa Pudlo, Helge Jung
  • Publication number: 20150068251
    Abstract: A method for producing a glass strip is provided. The method includes providing a glass preform with flat cross section, wherein the width of the cross section is at least five times greater than its thickness, wherein the cross section tapers into the edge regions in such a way that the thickness of the glass preform relative to its side edges amounts to at most two-thirds of the maximum thickness of a plate-shaped center region of the glass preform; heating the glass preform within a deformation zone, so that the glass found in the deformation zone softens; and applying a tensile force onto the glass preform in the direction perpendicular to the cross section, so that the glass preform is drawn in length in the deformation zone.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 12, 2015
    Inventors: Clemens Ottermann, Frank Buellesfeld, Ulrich Lange
  • Publication number: 20140357467
    Abstract: A drawing method for glass is described. The method provides glass components that have a strongly increased ratio of width to thickness when compared to the preform, which makes the manufacturing of flat glass components more economical. The method purposefully controls the temperature distribution within the preform.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 4, 2014
    Applicant: SCHOTT AG
    Inventors: Frank BUELLESFELD, Ralf BIERTUEMPFEL
  • Publication number: 20140342120
    Abstract: A method for the production of glass components, an apparatus for carrying out the method and a glass component that is obtainable through the method are provided. The method is a drawing method wherein a forming zone of a preform is heated to a temperature that allows drawing of the glass. The method is characterized in that the forming zone of the preform is very small. Thereby the width of the preform is decreased to a smaller extent than its thickness. The glass components that can be obtained by this method have very smooth surfaces.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 20, 2014
    Inventors: Frank Buellesfeld, Ulrich Lange, Ralf Biertuempfel, Lisa Pudlo, Helge Jung
  • Patent number: 8101019
    Abstract: In the method of making a monocrystalline or polycrystalline semiconductor material semiconductor raw material is introduced into a melting crucible and directionally solidified using a vertical gradient freeze method. The molten material trickles downward, so that the raw material that has not yet melted gradually slumps in the melting crucible. The semiconductor raw material is replenished from above onto a zone of semiconductor raw material which has not yet melted or is not completely melted to at least partly compensate for shrinkage of the raw material and to raise the filling level. To reduce the melting time and influence the thermal conditions in the system as little as possible, the semiconductor raw material to be replenished is heated to a temperature below its melting temperature and introduced into the crucible in the heated state.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: January 24, 2012
    Assignee: Schott AG
    Inventors: Uwe Sahr, Matthias Mueller, Ingo Schwirtlich, Frank-Thomas Lentes, Frank Buellesfeld
  • Patent number: 7963122
    Abstract: The invention relates to a method and an apparatus for producing optical glass elements, in particular optical prisms or optical rod lenses, using a drawing process. The geometry of the glass strand which is to be produced is controlled by means of cooling or heating elements positioned at least around portions of the periphery or longitudinal axis of the glass strand, inside or outside the heating apparatus.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: June 21, 2011
    Assignee: Schott AG
    Inventors: Frank Büellesfeld, Andreas Langsdorf, Ulrich Lange, Volker Plapper
  • Patent number: 7905115
    Abstract: The invention relates to glass powder, especially a biologically active glass powder, which includes a plurality of glass particles and which is characterized by the following features: the glass particles are made up by >90% of non-spherical particles; the geometry of the individual non-spherical particle is characterized by a ratio of length to diameter of 1.1 to 105.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: March 15, 2011
    Assignee: Schott AG
    Inventors: Guido Räke, Hildegard Römer, Peter Schreckenberg, Josè Zimmer, Frank Büllesfeld, Jörg Fechner, Cevin Czisch, Udo Fritsching
  • Publication number: 20100296716
    Abstract: Method for creating and presenting layer images that are generated from a set of volume data, whereby the volume data are recorded with a tomographic recording device, for example with a “cone beam CT” device, and show the jaw area of a patient, whereby planning data are assigned to the volume data, and said planning data describe the position of an implant that is to be inserted into the jaw and that has an implant axis, whereby a coordinate system that is adapted to a panoramic curve or a panoramic surface is defined that is formed by the vectors u, v, and w that are orthogonal to one another, whereby for the creation and presentation of a layer image, a representational plane is selected that intersects an implant that is described by the planning data, whereby in a first case, the v vector is orthogonal to the panoramic surface and/or the panoramic curve, and the implant axis intersects in a reference point, whereby the reference point is selected as the origin of the coordinate system, whereby the w-vect
    Type: Application
    Filed: September 18, 2008
    Publication date: November 25, 2010
    Applicant: SICAT GMBH & CO. KG
    Inventors: Niels Hanssen, Frank Buellesfeld
  • Publication number: 20090158993
    Abstract: The invention relates to a method for producing a monocrystalline or polycrystalline semiconductor material by way of directional solidification, wherein lumpy semiconductor raw material is introduced into a melting crucible and melted therein and directionally solidified, in particular using the vertical gradient freeze method. In order to prevent contamination and damage, the semiconductor raw material is melted from the upper end of the melting crucible. The molten material trickles downward, so that semiconductor raw material which has not yet melted gradually slumps in the melting crucible. In this case, the additional semiconductor raw material is replenished to the melting crucible from above onto a zone of semiconductor raw material which has not yet melted or is not completely melted, in order at least partly to compensate for a volumetric shrinkage of the semiconductor raw material and to increase the filling level of the crucible.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 25, 2009
    Inventors: Uwe Sahr, Matthias Mueller, Ingo Schwirtlich, Frank-Thomas Lentes, Frank Buellesfeld
  • Publication number: 20090158778
    Abstract: The glass fiber for an optical amplifier has a glass core, a first glass cladding, and a second glass cladding. The core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The process for making the glass fiber includes first making a preform consisting of the core and the first glass cladding by drawing from a double crucible. Then the second glass cladding is formed around the preform by a rod-in-tube process. The glass claddings have a composition that includes a transition metal compound as an absorbent.
    Type: Application
    Filed: March 6, 2009
    Publication date: June 25, 2009
    Inventors: Ulrich Peuchert, Ruediger Sprenhard, Martin Letz, Frank Buellesfeld
  • Patent number: 7515802
    Abstract: The glass fiber for an optical amplifier has a matrix glass core, a first glass cladding, and a second glass cladding. The matrix glass core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25 ; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The glass claddings have the same composition as the core, except that a transition metal compound is included as an absorbent. The refraction index of the matrix glass is > about 1.85, the refraction index of the first glass cladding is less than that of the core, and the refraction index of the second glass cladding is higher than that of the first.
    Type: Grant
    Filed: September 7, 2002
    Date of Patent: April 7, 2009
    Assignee: Schott AG
    Inventors: Ulrich Peuchert, Ruediger Sprenhard, Martin Letz, Frank Buellesfeld
  • Patent number: 7377130
    Abstract: The method of making globular or spherical bodies of optical quality includes filling receptacles (2) in a heat-resistant support (3) made of a porous material with glass gobs (1); conducting gas through the heat-resistant support so that a gas flow (4) passes through the support in a direction (14) opposite to a direction in which gravity acts; heating the heat-resistant support (3) to a temperature at which the glass gobs (1) have a viscosity of up to about 106 poise; maintaining the support (3) at this temperature for a predetermined time interval; and then cooling the support (3) to ambient temperature while continuing to provide the gas flow (4) through the support (3).
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 27, 2008
    Assignee: Schott AG
    Inventors: Andreas Langsdorf, Frank Buellesfeld
  • Patent number: 7374714
    Abstract: A process for shaping a body with elongate structures on its surface, bodies produced using the process, and to apparatuses having these bodies are provided. For this purpose, a preform is provided, at the surface, with structures which are elongate along one direction, the preform is heated at least in one region and the preform is drawn in the heated state until at least part of the preform has adopted a cross section which substantially corresponds to the desired cross-sectional shape or final cross-sectional shape. The preform is heated by means of radiation which has a spectral distribution which is such that at most half of the radiation power is absorbed during a single pass through the material.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: May 20, 2008
    Assignee: Schott AG
    Inventors: Frank Büllesfeld, Paul Kissl, Sabine Lehnicke, Martin Zimmermann, Christian Kunert, Bernd Hoppe, Volker Plapper
  • Publication number: 20070271963
    Abstract: A process for producing tubes or rods is provided. The process includes providing a settable liquid and producing a strand by drawing the liquid from a nozzle in a drawing direction. The result of this is that the settable liquid emerges through an annular gap formed by the nozzle with the desired production throughput at the temperature which is above the devitrification temperature. The settable liquid cools as it flows down an outer and/or an inner surface of a displacement body so that, by the end of the displacement body, the settable liquid has a sufficiently high viscosity to be drawn in stable form at the desired production throughout without flowing more quickly than the drawing rate as a result of its own weight.
    Type: Application
    Filed: October 1, 2004
    Publication date: November 29, 2007
    Inventors: Ulrich Lange, Frank Lentes, Andreas Langsdorf, Christian Kunert, Frank Buellesfeld
  • Patent number: 7185517
    Abstract: The double crucible for a glass drawing method has a heatable outer crucible (1) and an inner crucible (2) surrounded by the outer crucible (1), which is heatable separately from the outer crucible (1). Both crucibles (1,2) have an outlet nozzle (1a, 2a) for the glass to be drawn. To make glass fibers from heavy metal oxide glass (HMO-glass) with higher quality and comparatively simple crucible features, the outlet nozzle (1a) of the outer crucible (1) extends a certain distance beyond the outlet nozzle (2a) of the inner crucible (2). Surfaces of the outlet nozzles coming in contact with the glass melt are polished and are provided on a material, which has a reducing action on heavy metal glass in the melt in all cases. These surfaces also have sufficient mechanical strength for and chemical inertness to heavy metal oxide glass.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: March 6, 2007
    Assignee: Schott AG
    Inventors: Frank Buellesfeld, Paul Kissl, Uwe Kolberg, Volker Ohmstede
  • Publication number: 20060141181
    Abstract: The invention relates to glass tubes for technical applications, especially for electrical or magnetic components, such as reed switches for example. According to a first embodiment, the glass tube has an inner bore (23) and at least one cross-sectional constriction (X) whereby the relationship applicable between the respective cross-sectional constriction (X) and the diameter (d) of the circumference of inner bore (23) is: x greater than or equal to 0.02*d, more preferably x greater than or equal to 0.1*d. According to a further embodiment, the glass tube has at least one inner bore with at least one inner edge, wherein the radius of curvature of the respective inner edge is less than or equal to 0.1 mm and preferably less than or equal to 0.03 mm. The glass tube is used as a preform for a subsequent redrawing process. The preform is formed by casting a molten glass into a shaft in the interior of which is located a shaping means for defining the inner bore.
    Type: Application
    Filed: December 7, 2005
    Publication date: June 29, 2006
    Inventors: Andreas Langsdorf, Frank Buellesfeld, Ulrich Lange, Martin Zoettl
  • Publication number: 20060130525
    Abstract: The invention relates to a device and a process for producing a glass tube, preferably continuously. The device comprises a shaft (9) into which a glass melt is introduced, so that the outer profile of the glass tube (1) is determined at least in sections by the shaft, and a shaping means (10), which extends coaxially in the interior of the shaft, for determining the inner profile of the glass tube (1). The shaping means (10) is cooled and the shaft is disposed vertically. The glass melt is cast freely into the shaft (9) while forming a free meniscus. According to the invention, the shaping means (10) is cooled so that the glass melt solidifies in the shaft to form the glass tube (1). The glass passes through the temperature range which is critical for crystal formation within a very short time, so that precise glass tubes can also be produced from readily crystallising glasses. It is also possible to precisely shape glass tubes with any desired inner and/or outer profiles.
    Type: Application
    Filed: December 7, 2005
    Publication date: June 22, 2006
    Inventors: Frank Buellesfeld, Markus Riedl, Paul Kissl
  • Publication number: 20060059950
    Abstract: The invention relates to a method and an apparatus for producing optical glass elements, in particular optical prisms or optical rod lenses, using a drawing process. The geometry of the glass strand which is to be produced is controlled by means of cooling or heating elements positioned at least around portions of the periphery or longitudinal axis of the glass strand, inside or outside the heating apparatus.
    Type: Application
    Filed: September 2, 2005
    Publication date: March 23, 2006
    Inventors: Frank Buellesfeld, Andreas Langsdorf, Ulrich Lange, Volker Plapper
  • Publication number: 20040252961
    Abstract: The invention relates to a glass fibre, comprising a core, the matrix glass of which contains at least one heavy metal oxide and at least one rare earth compound, whereby said core is surrounded by at least two glass layers. The invention further relates to a method for production of said glass fibre.
    Type: Application
    Filed: August 16, 2004
    Publication date: December 16, 2004
    Inventors: Ulrich Peuchert, Ruediger Sprenhard, Martin Letz, Frank Buellesfeld