Patents by Inventor Frank DiMeo

Frank DiMeo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160041136
    Abstract: A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Application
    Filed: October 19, 2015
    Publication date: February 11, 2016
    Applicant: Entegris, Inc.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank DiMeo, JR.
  • Patent number: 9170246
    Abstract: A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 27, 2015
    Assignee: ENTEGRIS, INC.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank DiMeo, Jr.
  • Publication number: 20140041440
    Abstract: A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: James DIETZ, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, JR.
  • Patent number: 8603252
    Abstract: A method and apparatus for cleaning residue from components of semiconductor processing systems used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive material for sufficient time and under sufficient conditions to at least partially remove the residue. When the residue and the material from which the components are constructed are different, the gas-phase reactive material is selectively reactive with the residue and minimally reactive with the materials from which the components of the ion implanter are constructed. When the residue and the material from which the components are constructed is the same, then the gas-phase reactive material may be reactive with both the residue and the component part.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: December 10, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, James Dietz, W. Karl Olander, Robert Kaim, Steven Bishop, Jeffrey W. Neuner, Jose Arno, Paul J. Marganski, Joseph D. Sweeney, David Eldridge, Sharad Yedave, Oleg Byl, Gregory T. Stauf
  • Patent number: 8555705
    Abstract: A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 15, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, Jr.
  • Publication number: 20120305450
    Abstract: A method is provided for producing an ultra-low sulfur hydrocarbon product from a hydrocarbon feedstock containing refractory sulfur compounds utilizing a carbon adsorbent. Also described is a hydrocarbon processing system configured to produce an ultra-low sulfur hydrocarbon product from hydrocarbon feedstock containing refractory sulfur compounds. The hydrocarbon processing system also utilizes a carbon adsorbent.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 6, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Patent number: 8221532
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: July 17, 2012
    Inventors: J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
  • Patent number: 8109130
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: February 7, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Publication number: 20110252883
    Abstract: A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Application
    Filed: June 28, 2011
    Publication date: October 20, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, JR.
  • Publication number: 20110220518
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Application
    Filed: January 4, 2011
    Publication date: September 15, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Patent number: 7966879
    Abstract: A monitoring system (100) for monitoring fluid in a fluid supply vessel (22, 24, 26, 28, 108) during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors (114, 126) for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module (40, 132, 146) operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor (50, 150) and display (52, 150) operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: June 28, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, Jr.
  • Patent number: 7862646
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 4, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
  • Patent number: 7819981
    Abstract: A method and apparatus for cleaning residue from components of an ion source region of an ion implanter used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive halide composition for sufficient time and under sufficient conditions to at least partially remove the residue. The gas-phase reactive halide composition is chosen to react selectively with the residue, while not reacting with the components of the ion source region or the vacuum chamber.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: October 26, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank DiMeo, Jr., James Dietz, W. Karl Olander, Robert Kaim, Steven E. Bishop, Jeffrey W. Neuner, Jose I. Arno
  • Publication number: 20100154835
    Abstract: A method and apparatus for cleaning residue from components of semiconductor processing systems used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive material for sufficient time and under sufficient conditions to at least partially remove the residue. When the residue and the material from which the components are constructed are different, the gas-phase reactive material is selectively reactive with the residue and minimally reactive with the materials from which the components of the ion implanter are constructed. When the residue and the material from which the components are constructed is the same, then the gas-phase reactive material may be reactive with both the residue and the component part.
    Type: Application
    Filed: April 26, 2007
    Publication date: June 24, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Frank Dimeo, James Dietz, Karl W. Olander, Robert Kaim, Steven Bishop, Jeffrey W. Neuner, Jose Arno, Paul J. Marganski, Joseph D. Sweeney, David Eldridge, Sharad Yedave, Oleg Byl, Gregory T. Stauf
  • Publication number: 20090305427
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 10, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Frank Dimeo, JR., Philip S.H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Publication number: 20090095713
    Abstract: A method and apparatus for cleaning residue from components of an ion source region of an ion implanter used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive halide composition for sufficient time and under sufficient conditions to at least partially remove the residue. The gas-phase reactive halide composition is chosen to react selectively with the residue, while not reacting with the components of the ion source region or the vacuum chamber.
    Type: Application
    Filed: October 21, 2005
    Publication date: April 16, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., James Dietz, W. Karl Olander, Robert Kaim, Steven E. Bishop, Jeffrey W. Neuner, Jose I. Arno
  • Patent number: 7475588
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: January 13, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawacz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Publication number: 20080302246
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Application
    Filed: July 30, 2008
    Publication date: December 11, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Publication number: 20080280380
    Abstract: A monitoring system (100) for monitoring fluid in a fluid supply vessel (22, 24, 26, 28, 108) during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors (114, 126) for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module (40, 132, 146) operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor (50, 150) and display (52, 150) operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
    Type: Application
    Filed: October 24, 2005
    Publication date: November 13, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: James Dietz, Steven E. Bishop, James V. McManus, Steven M. Lurcott, Michael J. Wodjenski, Robert Kaim, Frank Dimeo, JR.
  • Publication number: 20080245676
    Abstract: Containment packages (10) having utility for transport of hazardous gases and security systems for controlling access to packages, e.g., hazardous gas containment packages (20). In a specific implementation, a containment package includes an overpack (11) for improving the safety and security of gas-containment vessels during transportation, e.g., air shipment, in which the overpack is pressurized by a protective gas at pressure in excess of the pressure in the gas-containment vessels, and a global positioning system (GPS) coordinated programmable lock and key system (30) is integrated with the containment package for controlled access to the gas-containment vessels only when the GPS component indicates that the containment package is at a specific geographic location.
    Type: Application
    Filed: August 22, 2006
    Publication date: October 9, 2008
    Inventors: James V. McManus, Jerrold David Sameth, Frank Dimeo