Patents by Inventor Frank E. Peterkin

Frank E. Peterkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7767335
    Abstract: A battery assembly is provided for electrical concatenation in series. The battery assembly includes a plurality of battery packs; a switch; a receiver; and an actuator. Each battery pack includes a plurality of rechargeable battery cells electrically connected in series. The switch electrically connects and disconnects first and second battery packs together. The receiver transmits power from the switch. The actuator operates the switch to connect and disconnect the battery packs. In preferred embodiments, the switch includes first and second buses and a deflector. The first bus electrically contacts the first battery pack. The second bus electrically contacts the second battery pack. The deflector moves the first bus electrically connect and disconnect with the second bus in response to communication with the actuator. An electrical connector is further provided for mechanical engagement and disengagement of electrical conduction to a terminal. The connector includes a block and a plurality of contacts.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: August 3, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joseph F. Sharrow, Frank E. Peterkin
  • Patent number: 7108940
    Abstract: A battery mechanism is disclosed. The battery mechanism in one embodiment includes battery assemblies, a switching mechanism, and an actuating mechanism. The battery assemblies are removably mounted to the switching mechanism. The switching mechanism has a non-energized position in which the battery assemblies are electrically disconnected from the switching mechanism. The switching mechanism also has an energized position in which the battery assemblies are electrically connected to the switching mechanism. The actuating mechanism is connected to the switching mechanism, and switches the switching mechanism between the non-energized and the energized positions. The actuating mechanism preferably is activated remotely, improving personnel safety. The number and make-up of the battery assemblies may be varied to provide for different voltages.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 19, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joseph F. Sharrow, Kurt W. Solomon, Frank E. Peterkin, Jack S. Bernardes, Brian J. Hankla
  • Patent number: 6518692
    Abstract: A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: February 11, 2003
    Assignees: Old Dominion University, OSRAM Sylvania, Inc.
    Inventors: Karl H. Schoenbach, Wojciech W. Byszewski, Frank E. Peterkin, Amin N. Dharami
  • Publication number: 20020036461
    Abstract: A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
    Type: Application
    Filed: October 31, 2001
    Publication date: March 28, 2002
    Applicant: Osram Sylvania Inc.
    Inventors: Karl H. Schoenbach, Wojciech W. Byszewski, Frank E. Peterkin, Amin N. Dharami
  • Patent number: 6346770
    Abstract: A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: February 12, 2002
    Assignees: Osram Sylvania, Inc., Old Dominion University
    Inventors: Karl H. Schoenbach, Wojciech W. Byszewski, Frank E. Peterkin, Amin N. Dharamsi
  • Patent number: 6072273
    Abstract: A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: June 6, 2000
    Assignees: Osram Sylvania Inc., Old Dominion University
    Inventors: Karl H. Schoenbach, Wojciech W. Byszewski, Frank E. Peterkin, Amin N. Dharamsi
  • Patent number: 5939829
    Abstract: A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: August 17, 1999
    Assignee: Osram Sylvania, Inc.
    Inventors: Karl H. Schoenbach, Wojciech W. Byszewski, Frank E. Peterkin, Amin N. Dharamsi
  • Patent number: 5686789
    Abstract: A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
    Type: Grant
    Filed: March 14, 1995
    Date of Patent: November 11, 1997
    Assignee: Osram Sylvania Inc.
    Inventors: Karl H. Schoenbach, Wojciech W. Byszewski, Frank E. Peterkin, Amin N. Dharamsi