Patents by Inventor Frank Friedel

Frank Friedel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11453923
    Abstract: A flat steel product which, following a 5% biaxial deformation, exhibits, on one surface, a Wsa(1-5) value of <0.35 ?m, a planar anisotropy ?r of ?0.5 to +0.5 and, from the surface to a depth of <200 ?m, and a nanohardness of >0.1 to <3.0 GPa. Also, a method of making the product where a slab including (in wt. %) 0.0003-0.050% C, 0.0001-0.20% Si, 0.01-1.5% Mn, 0.001-0.10% P, 0.0005-0.030% S, 0.001-0.12% AI, and 0.0001-0.01% N, the remainder Fe and impurities is heated to 1200-1270° C., rough-rolled with a reduction of 80-90%, and finish-hot-rolled at 850-950° C. with a reduction of 85-95%, for a total deformation of 95-99.5%. The reduction in the last hot roll pass is 1-25%, and the product is cooled at 4-30 K/s to a coiling temperature of 620-780° C. Following pickling, the product is cold-rolled with a total degree of deformation of 70-90% and recrystallization annealed at 650-900° C.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: September 27, 2022
    Assignees: ThyssenKrupp Steel Europe AG, thyssenkrupp AG
    Inventors: Frank Friedel, Friedhelm Macherey, Lena Sattler, Robert Yanik
  • Publication number: 20200332379
    Abstract: A flat steel product which, following a 5% biaxial deformation, exhibits, on one surface, a Wsa(1-5) value of <0.35 ?m, a planar anisotropy ?r of ?0.5 to +0.5 and, from the surface to a depth of <200 ?m, and a nanohardness of >0.1 to <3.0 GPa. Also, a method of making the product where a slab including (in wt. %) 0.0003-0.050% C, 0.0001-0.20% Si, 0.01-1.5% Mn, 0.001-0.10% P, 0.0005-0.030% S, 0.001-0.12% Al, and 0.0001-0.01% N, the remainder Fe and impurities is heated to 1200-1270° C., rough-rolled with a reduction of 80-90%, and finish-hot-rolled at 850-950° C. with a reduction of 85-95%, for a total deformation of 95-99.5%. The reduction in the last hot roll pass is 1-25%, and the product is cooled at 4-30 K/s to a coiling temperature of 620-780° C. Following pickling, the product is cold-rolled with a total degree of deformation of 70-90% and recrystallization annealed at 650-900° C.
    Type: Application
    Filed: September 13, 2017
    Publication date: October 22, 2020
    Inventors: Frank Friedel, Friedhelm Macherey, Lena Sattler, Robert Yanik
  • Publication number: 20130206284
    Abstract: A method for producing a steel component with a metallic anti-corrosion coating from a sheet steel product comprising at least 0.4% by weight Mn is disclosed. The sheet steel product is annealed in a continuous furnace under an annealing atmosphere containing up to 25% by volume H2, 0.1% to 10% by volume NH3, H2O, N2, and process-related impurities as the remainder, at a dew point between ?50° C. and ?5° C. at a temperature of 400 to 1100° C. for 5 to 600 s. The annealed sheet steel product has a 5 to 200 ?m thick nitration layer with a particle size finer than the particle size of the inner core layer. Once coated with a metallic protective layer, a blank is separated from the annealed sheet steel product, heated to an austenitising temperature of 780 to 950° C., hot-formed, and cooled so that a hardened structure forms.
    Type: Application
    Filed: June 14, 2011
    Publication date: August 15, 2013
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Martin Norden, Jens Kondrattuk, Manfred Meurer, Patrik Kuhn, Volker Marx, Horst Berndsen, Frank Friedel
  • Publication number: 20090139872
    Abstract: A cost-favorable process for production of corrosion-resistant sheet steel products, having good characteristics of use for certain application purposes includes applying a zinc-containing coating by electro-galvanizing a flat steel product, finally cleaning mechanically and/or chemically the flat steel product, applying a magnesium-based coating to the finally cleaned zinc-containing coating by means of vapour deposition, and heat treating the coated flat steel product to form a diffusion or convention layer between the zinc-containing coating and the magnesium-based coating at a temperature of 320 ° C. to 335 ° C. under normal atmosphere.
    Type: Application
    Filed: September 22, 2006
    Publication date: June 4, 2009
    Applicant: ThyssenKrupp Steel AG
    Inventors: Nicole Weiher, Bernd Schuhmacher, Michael Steinhorst, Andreas Klare, Tamara Appel, Ralf Bause, Stefan Kohler, Krasimir Nikolov, Monika Riemer, Slavcho Topalski, Frank Friedel, Wilfried Prange, Reinhard Schulski, Christian Schwerdt, Rolf Bode, Brigitte Bode
  • Patent number: 6887590
    Abstract: The present invention relates to a method for the manufacture of galvannealed metal sheet, wherein a hot strip is produced from an IF steel containing 0.01 to 0.1 wt. % silicon, wherein the hot strip is coiled at a coiler temperature no lower than 700° C. and no higher than 750° C., wherein a cold strip is rolled from the coiled hot strip, wherein the cold strip is recrystallization-annealed in an annealing furnace in an annealing gas atmosphere, wherein the cold strip thus annealed is provided with a zinc coating in a zinc bath, and wherein the coated cold strip is post-annealed at a galvannealing temperature no lower than 500° C. and no higher than 540° C. The invention also relates to a galvannealed metal sheet which possesses improved adhesion of the coating layer to the base material and proposes a method which is suited for the manufacture of metal sheet having such properties.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: May 3, 2005
    Assignee: ThyssenKrupp Stahl AG
    Inventors: Sabine Zeizinger, Horst Berndsen, Frank Friedel, Manfred Meurer, Michael Westholt
  • Publication number: 20030155048
    Abstract: The present invention relates to a method for the manufacture of galvannealed metal sheet, wherein a hot strip is produced from an IF steel containing 0.01 to 0.1 wt. % silicon, wherein the hot strip is coiled at a coiler temperature no lower than 700° C. and no higher than 750° C., wherein a cold strip is rolled from the coiled hot strip, wherein the cold strip is recrystallisation-annealed in an annealing furnace in an annealing gas atmosphere, wherein the cold strip thus annealed is provided with a zinc coating in a zinc bath, and wherein the coated cold strip is post-annealed at a galvannealing temperature no lower than 500° C. and no higher than 540° C. The invention also relates to a galvannealed metal sheet which possesses improved adhesion of the coating layer to the base material and proposes a method which is suited for the manufacture of metal sheet having such properties.
    Type: Application
    Filed: April 1, 2003
    Publication date: August 21, 2003
    Inventors: Sabine Zeizinger, Horst Berndsen, Frank Friedel, Manfred Meurer, Michael Westholt
  • Patent number: 6436556
    Abstract: The invention relates to a method and a device for the production of a strip-like metallic composite material by the high-temperature dip coating of a metallic carrier strip, consisting of a metallurgic vessel for receiving the liquid depositing material, through which the carrier strip is capable of being led in a preferably vertical run-through direction by means of pairs of rollers arranged on the entry and the exit side, and of a preheating device for the carrier strip, said preheating device being located upstream of the metallurgic vessel. At the same time, the preheating device (41) is arranged in a housing (61) which is arranged in the entry region upstream of the metallurgic vessel (11) and surrounds the carrier strip (21) and into which the medium coming from a media supply (52) is capable of being introduced via at least one feed (51) led into the housing.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: August 20, 2002
    Assignees: SMS Demag AG, Thyssen Krupp Stahl AG
    Inventors: Wolfgang Bleck, Rolf Bünten, Frank Friedel, Oliver Picht, Wolfgang Reichelt, Wilhelm Schmitz, Dieter Senk, Paul Splinter, Ulrich Urlau