Patents by Inventor Frank Gelhausen

Frank Gelhausen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11011886
    Abstract: A package structure of a directly modulated laser in a photonics module includes a thermoelectric cooler including multiple conductor traces formed in a cool surface. The package structure further includes a directly modulated laser (DML) chip having a first electrode being attached with the cool surface and a second electrode at a distance away from the cool surface. Additionally, the package structure includes an interposer having a plurality of through-holes formed between a first surface to a second surface. The first surface is mounted to the cool surface such that each through-hole is aligned with one of the multiple conductor traces and the second surface being leveled with the second electrode. Moreover, the package structure includes a driver disposed on the second surface of the interposer with at least a galvanically coupled output port coupled directly to the second electrode of the DML chip.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: May 18, 2021
    Assignee: INPHI CORPORATION
    Inventors: Frank Gelhausen, Ahmed Sanaa Ahmed Awny, Edward Pillai, Ulrich Schacht, Oliver Piepenstock
  • Publication number: 20200194969
    Abstract: A package structure of a directly modulated laser in a photonics module includes a thermoelectric cooler including multiple conductor traces formed in a cool surface. The package structure further includes a directly modulated laser (DML) chip having a first electrode being attached with the cool surface and a second electrode at a distance away from the cool surface. Additionally, the package structure includes an interposer having a plurality of through-holes formed between a first surface to a second surface. The first surface is mounted to the cool surface such that each through-hole is aligned with one of the multiple conductor traces and the second surface being leveled with the second electrode. Moreover, the package structure includes a driver disposed on the second surface of the interposer with at least a galvanically coupled output port coupled directly to the second electrode of the DML chip.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Inventors: Frank GELHAUSEN, Ahmed Sanaa AHMED AWNY, Edward PILLAI, Ulrich SCHACHT, Oliver PIEPENSTOCK
  • Patent number: 10615567
    Abstract: A package structure of a directly modulated laser in a photonics module includes a thermoelectric cooler including multiple conductor traces formed in a cool surface. The package structure further includes a directly modulated laser (DML) chip having a first electrode being attached with the cool surface and a second electrode at a distance away from the cool surface. Additionally, the package structure includes an interposer having a plurality of through-holes formed between a first surface to a second surface. The first surface is mounted to the cool surface such that each through-hole is aligned with one of the multiple conductor traces and the second surface being leveled with the second electrode. Moreover, the package structure includes a driver disposed on the second surface of the interposer with at least a galvanically coupled output port coupled directly to the second electrode of the DML chip.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 7, 2020
    Assignee: INPHI CORPORATION
    Inventors: Frank Gelhausen, Ahmed Sanaa Ahmed Awny, Edward Pillai, Ulrich Schacht, Oliver Piepenstock
  • Patent number: 8970300
    Abstract: Improved preamplifier circuits for converting single-ended input current signals to differential output voltage signals, including first and second transimpedance amplifiers with input transistors operating according to bias currents from a biasing circuit, output transistors and adjustable feedback impedances modified using an automatic gain control circuit, as well as a reference circuit controlling the bias currents according to an on-board reference current and the single-ended input or the differential output voltage signals from the transimpedance amplifiers.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: March 3, 2015
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Oliver Piepenstock, Gerd Schuppener, Frank Gelhausen, Ulrich Schacht
  • Publication number: 20140306760
    Abstract: Improved preamplifier circuits for converting single-ended input current signals to differential output voltage signals, including first and second transimpedance amplifiers with input transistors operating according to bias currents from a biasing circuit, output transistors and adjustable feedback impedances modified using an automatic gain control circuit, as well as a reference circuit controlling the bias currents according to an on-board reference current and the single-ended input or the differential output voltage signals from the transimpedance amplifiers.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Applicant: Texas Instruments Deutschland GmbH
    Inventors: Oliver Piepenstock, Gerd Schuppener, Frank Gelhausen, Ulrich Schacht
  • Patent number: 8588275
    Abstract: The invention relates to an electronic device that includes a plurality of buffers and a phase locked loop. For each buffer a fractional divider is provided which is coupled to receive the output from the phase locked loop and configured to feed a divided output signal to a respective buffer. A spread spectrum clock control logic stage in the spread spectrum clock (SSC) is provided which is configured to individually adjust a value of the division of each fractional divider in order to individually and independently modulate the output signal of each fractional divider according to a spread spectrum modulation scheme.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 19, 2013
    Assignees: Texas Instruments Incorporated, Texas Instruments Deutschland GmbH
    Inventors: Frank Gelhausen, Oliver Piepenstock, Mustafa U. Erdogan
  • Publication number: 20120076176
    Abstract: The invention relates to an electronic device that includes a plurality of buffers and a phase locked loop. For each buffer a fractional divider is provided which is coupled to receive the output from the phase locked loop and configured to feed a divided output signal to a respective buffer. A spread spectrum clock control logic stage in the spread spectrum clock (SSC) is provided which is configured to individually adjust a value of the division of each fractional divider in order to individually and independently modulate the output signal of each fractional divider according to a spread spectrum modulation scheme.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 29, 2012
    Applicants: Texas Instruments Incorporated, Texas Instruments Deutschland GmbH
    Inventors: Frank Gelhausen, Oliver Piepenstock, Mustafa U. Erdogan
  • Patent number: 8125273
    Abstract: Here, a driver for an light emitting diode (LED) is provided. Within this driver, several differential pairs of bipolar transistors are employed in an input stage and output stage along with a control loop. Collectively, these components operate together to drive the LED with a low headroom voltage while still achieving high driver performance in terms of edge speed and jitter.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Dirk Muentefering, Frank Gelhausen, Oliver Piepenstock, Andreas Bock
  • Publication number: 20100295617
    Abstract: Here, a driver for an light emitting diode (LED) is provided. Within this driver, several differential pairs of bipolar transistors are employed in an input stage and output stage along with a control loop. Collectively, these components operate together to drive the LED with a low headroom voltage while still achieving high driver performance in terms of edge speed and jitter.
    Type: Application
    Filed: April 20, 2010
    Publication date: November 25, 2010
    Applicant: Texas Instruments Deutschland GmbH
    Inventors: Dirk Muentefering, Frank Gelhausen, Oliver Piepenstock, Andreas Bock
  • Patent number: 7256660
    Abstract: A CMOS LC-tank oscillator includes a pair of symmetric inductors and a differential pair of transistors. The inductors have a first one of their terminals interconnected at a supply node to which a voltage supply is applied through a supply resistor and a second terminal connected to the drain of a respective one of the transistors. The transistors have their sources interconnected at a tail node which is connected to ground through a tail resistor. A current control loop controls a core current between the supply and tail nodes so as to keep a voltage drop across the tail resistor at a level determined by a reference voltage. The current control loop keeps the core current between the supply and tail nodes at the required level so that a resistor may replace the upstream supply voltage regulator and another resistor may replace the downstream bias regulator. Consequently, sources of noise injected into the LC-tank type oscillator are eliminated.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: August 14, 2007
    Assignee: Texas Instruments Deutschland, GmbH
    Inventors: Frank Gelhausen, Karlheinz Muth
  • Publication number: 20060132253
    Abstract: A CMOS LC-tank oscillator includes a pair of symmetric inductors and a differential pair of transistors. The inductors have a first one of their terminals interconnected at a supply node to which a voltage supply is applied through a supply resistor and a second terminal connected to the drain of a respective one of the transistors. The transistors have their sources interconnected at a tail node which is connected to ground through a tail resistor. A current control loop controls a core current between the supply and tail nodes so as to keep a voltage drop across the tail resistor at a level determined by a reference voltage. The current control loop keeps the core current between the supply and tail nodes at the required level so that a resistor may replace the upstream supply voltage regulator and another resistor may replace the downstream bias regulator. Consequently, sources of noise injected into the LC-tank type oscillator are eliminated.
    Type: Application
    Filed: May 19, 2005
    Publication date: June 22, 2006
    Inventors: Frank Gelhausen, Karlheinz Muth