Patents by Inventor Frank Großmann

Frank Großmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230083112
    Abstract: The present invention relates to an improved catalyst on the basis of a shaped catalyst body for hydrogenating carbonyl groups in organic compounds under the effect of acids and water, characterized in that the shaped catalyst body contains copper in an amount of 17.5 to 34.5 wt. %, relative to the shaped catalyst body and the copper is present in the shaped catalyst body to at least 70% in the form of a copper spinel CuAl2O4. The invention also relates to the production of the catalyst an to the use of same in the hydrogenation of carbonyl groups in organic compounds in the presence of acids and/or water.
    Type: Application
    Filed: March 9, 2021
    Publication date: March 16, 2023
    Inventors: Christoph DOERFELT, Manuel PFANZELT, Goetz BURGFELS, Frank GROSSMANN
  • Publication number: 20220401928
    Abstract: The present invention relates to an improved chromium-free Cu—Al catalyst for the hydrogenation of carbonyl groups in organic compounds, characterized in that the catalyst contains zirconium in a proportion of 0.5 to 30.0 wt. %. The invention also relates to the production of the catalyst and to the use of same in the hydrogenation of carbonyl groups in organic compounds.
    Type: Application
    Filed: November 13, 2020
    Publication date: December 22, 2022
    Inventors: Christoph DOERFELT, Manuel PFANZELT, Goetz BURGFELS, Frank GROSSMANN, Maurice Frederic PILZ
  • Patent number: 10744487
    Abstract: The invention relates to a copper manganese-based catalyst on the basis of a tablet-form shaped catalyst body, comprising calcium aluminate as a binder, for hydrating carbonyl groups in organic compounds, characterised in that said shaped catalyst body comprises calcium aluminate in an amount of 0.5 to 20 wt. %. The invention also relates to the production of the catalyst and to the use of same in the hydration of carbonyl groups in organic compound.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 18, 2020
    Assignee: CLARIANT INTERNATIONAL LTD
    Inventors: Manuel Pfanzelt, Martin Paulus, Frank Grossmann
  • Patent number: 10639616
    Abstract: The invention relates to Cu—Al—Mn shaped catalyst bodies in extruded form, and to a process for their preparation. The shaped catalyst body is suitable for the hydrogenation of organic compounds containing a carbonyl function, in particular for the hydrogenation of aldehydes, ketones and carboxylic acids and/or their esters. In particular, the shaped catalyst body is suitable for the hydrogenation of fatty acids or their esters, such as fatty acid methyl esters, to form the corresponding alcohols and dicarboxylic acid anhydrides, such as maleic anhydride, or esters of di-acids and di-alcohols, such as butane diol.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: May 5, 2020
    Assignee: Clariant International Ltd
    Inventors: Martin Paulus, Frank Grossmann, Oliver Wegner
  • Publication number: 20200101446
    Abstract: This invention relates to heterogeneous catalysts useful for selective hydrogenation of unsaturated hydrocarbons, comprising palladium and optionally a promoter, supported on a substrate, having an uncoated BET surface area of ?9 m2/g, the surface being coated with an ionic liquid. Also described are methods of making the catalysts and methods of selective hydrogenation of acetylene and/or dienes in front-end mixed olefin feed streams.
    Type: Application
    Filed: November 25, 2019
    Publication date: April 2, 2020
    Inventors: Normen Szesni, Alfred Hagemeyer, Frank Grossmann, Richard Fischer, Michael Urbancic, Claus Lugmair, Mingyong Sun, Hongyi C. Hou, David Michael Lowe, Jennifer Boyer
  • Publication number: 20200094226
    Abstract: This invention relates to heterogeneous catalysts useful for selective hydrogenation of unsaturated hydrocarbons, comprising palladium and optionally a promoter, supported on a substrate, having an uncoated BET surface area of ?9 m2/g, the surface being coated with an ionic liquid. Also described are methods of making the catalysts and methods of selective hydrogenation of acetylene and/or dienes in front-end mixed olefin feed streams.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 26, 2020
    Inventors: Normen Szesni, Alfred Hagemeyer, Frank Grossmann, Richard Fischer, Michael Urbancic, Claus Lugmair, Mingyong Sun, Hongyi C. Hou, David Michael Lowe, Jennifer Boyer
  • Publication number: 20190321808
    Abstract: The invention relates to a copper manganese-based catalyst on the basis of a tablet-form shaped catalyst body, comprising calcium aluminate as a binder, for hydrating carbonyl groups in organic compounds, characterised in that said shaped catalyst body comprises calcium aluminate in an amount of 0.5 to 20 wt. %. The invention also relates to the production of the catalyst and to the use of same in the hydration of carbonyl groups in organic compound.
    Type: Application
    Filed: November 17, 2017
    Publication date: October 24, 2019
    Inventors: Manuel PFANZELT, Martin PAULUS, Frank GROSSMANN
  • Patent number: 10434500
    Abstract: The invention relates to a process for preparing a shaped Cu—Al catalyst body for the hydrogenation of organic compounds containing a carbonyl function. More particularly, the shaped catalyst body is suitable for the hydrogenation of aldehydes, ketones and of carboxylic acids or esters thereof, specifically of fatty acids or esters thereof, such as fatty acid methyl esters, to the corresponding alcohols such as butanediol. The present invention further relates to Cu—Al catalysts obtainable by the preparation process.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: October 8, 2019
    Assignee: CLARIANT INTERNATIONAL LTD.
    Inventors: Martin Paulus, Frank Grossmann, Karl-Heinz Stadler
  • Patent number: 10315188
    Abstract: The invention relates to a catalyst molded body, which is produced by deforming a mixture of a metal oxide and a special graphite. The invention further relates to a method for producing the corresponding catalyst molded bodies and to the use of the catalyst molded bodies for catalytic reactions in which hydrogen acts as a reaction reactant or reaction product, in particular hydrogenation, hydrogenolysis, and dehydrogenation reactions. The catalysts are characterized by an improvement in the activity and selectivity in particular in hydrogenation, hydrogenolysis, and dehydrogenation reactions, said improvement being achieved by adding special graphites.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 11, 2019
    Assignee: CLARIANT INTERNATIONAL LTD.
    Inventors: Martin Paulus, Frank Grossmann, Karl-Heinz Stadler
  • Patent number: 10226760
    Abstract: A method for producing a shaped Cu—Zn catalyst for hydrogenating organic compounds containing a carbonyl function. The shaped catalyst is suitable for hydrogenating aldehydes, ketones and also carboxylic acids and/or their esters, fatty acids and/or their esters, such as fatty acid methyl esters, to the corresponding alcohols, dicarboxylic anhydrides, such as maleic anhydride (MAn), or esters of diacids to dialcohols, such as butanediol. The present invention further relates to Cu—Zn catalysts obtainable by the production method.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: March 12, 2019
    Assignee: CLARIANT INTERNATIONAL LTD.
    Inventors: Martin Paulus, Frank Grossmann, Karl-Heinz Stadler
  • Publication number: 20180297015
    Abstract: The invention relates to a process for preparing a shaped Cu—Al catalyst body for the hydrogenation of organic compounds containing a carbonyl function. More particularly, the shaped catalyst body is suitable for the hydrogenation of aldehydes, ketones and of carboxylic acids or esters thereof, specifically of fatty acids or esters thereof, such as fatty acid methyl esters, to the corresponding alcohols such as butanediol. The present invention further relates to Cu—Al catalysts obtainable by the preparation process.
    Type: Application
    Filed: March 7, 2018
    Publication date: October 18, 2018
    Applicant: Clariant International Ltd.
    Inventors: Martin PAULUS, Frank GROSSMANN, Karl-Heinz STADLER
  • Patent number: 10035137
    Abstract: The invention relates to a process for preparing a shaped Cu—Al catalyst body for the hydrogenation of organic compounds containing a carbonyl function. More particularly, the shaped catalyst body is suitable for the hydrogenation of aldehydes, ketones and of carboxylic acids or esters thereof, specifically of fatty acids or esters thereof, such as fatty acid methyl esters, to the corresponding alcohols such as butanediol. The present invention further relates to Cu—Al catalysts obtainable by the preparation process.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: July 31, 2018
    Assignee: CLARIANT INTERNATIONAL LTD.
    Inventors: Martin Paulus, Frank Grossmann, Karl-Heinz Stadler
  • Publication number: 20170252727
    Abstract: The invention relates to Cu—Al—Mn shaped catalyst bodies in extruded form, and to a process for their preparation. The shaped catalyst body is suitable for the hydrogenation of organic compounds containing a carbonyl function, in particular for the hydrogenation of aldehydes, ketones and carboxylic acids and/or their esters. In particular, the shaped catalyst body is suitable for the hydrogenation of fatty acids or their esters, such as fatty acid methyl esters, to form the corresponding alcohols and dicarboxylic acid anhydrides, such as maleic anhydride, or esters of di-acids and di-alcohols, such as butane diol.
    Type: Application
    Filed: August 24, 2015
    Publication date: September 7, 2017
    Applicant: Clariant International Ltd.
    Inventors: Martin PAULUS, Frank GROSSMANN, Oliver WEGNER
  • Publication number: 20170113209
    Abstract: A method for producing a shaped Cu—Zn catalyst for hydrogenating organic compounds containing a carbonyl function. The shaped catalyst is suitable for hydrogenating aldehydes, ketones and also carboxylic acids and/or their esters, fatty acids and/or their esters, such as fatty acid methyl esters, to the corresponding alcohols, dicarboxylic anhydrides, such as maleic anhydride (MAn), or esters of diacids to dialcohols, such as butanediol. The present invention further relates to Cu—Zn catalysts obtainable by the production method.
    Type: Application
    Filed: March 19, 2015
    Publication date: April 27, 2017
    Applicant: Clariant International Ltd.
    Inventors: Martin PAULUS, Frank GROSSMANN, Karl-Heinz STADLER
  • Publication number: 20150314273
    Abstract: The invention relates to a process for preparing a shaped Cu—Al catalyst body for the hydrogenation of organic compounds containing a carbonyl function. More particularly, the shaped catalyst body is suitable for the hydrogenation of aldehydes, ketones and of carboxylic acids or esters thereof, specifically of fatty acids or esters thereof, such as fatty acid methyl esters, to the corresponding alcohols such as butanediol. The present invention further relates to Cu—Al catalysts obtainable by the preparation process.
    Type: Application
    Filed: September 25, 2013
    Publication date: November 5, 2015
    Applicant: Clariant International Ltd.
    Inventors: Martin PAULUS, Frank GROSSMANN, Karl-Heinz STADLER
  • Publication number: 20150238938
    Abstract: The invention relates to a catalyst molded body, which is produced by deforming a mixture of a metal oxide and a special graphite. The invention further relates to a method for producing the corresponding catalyst molded bodies and to the use of the catalyst molded bodies for catalytic reactions in which hydrogen acts as a reaction reactant or reaction product, in particular hydrogenation, hydrogenolysis, and dehydrogenation reactions. The catalysts are characterized by an improvement in the activity and selectivity in particular in hydrogenation, hydrogenolysis, and dehydrogenation reactions, said improvement being achieved by adding special graphites.
    Type: Application
    Filed: June 18, 2013
    Publication date: August 27, 2015
    Applicant: Clariant International Ltd.
    Inventors: Martin Paulus, Frank Grossmann, Karl-Heinz Stadler
  • Patent number: 8992768
    Abstract: A highly active nickel carrier catalyst based on aluminium oxide has a nickel content of approximately 20 to 70 wt.-% (as Ni) and optionally comprises a bonding agent and optionally a promoter, selected from the compounds of Mg, Ti, Pb, Pt, Ba, Ca and/or Cu, wherein the size of the Ni crystallites in the reduced state is in the range of approximately 3.5 to 4.5 nm and the distortion factor of the Ni crystallites is approximately 2 to 5%. In a method for the reduction of the content of sulphur compounds in hydrocarbon-based fuels by selective adsorption of the sulphur compounds on a nickel catalyst, a nickel catalyst based on aluminium oxide is used, particularly the nickel catalyst described above. A nickel catalyst based on aluminium oxide may be used for reducing the sulphur compound content in hydrocarbon-based fuels by selective adsorption of the sulphur compounds on said catalyst and/or for the hydrogenation of aromatic compounds.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: March 31, 2015
    Assignee: Süd-Chemie IP GmbH & Co. KG
    Inventors: Jürgen Ladebeck, Tiberius Regula, Klaus Wanninger, Wolfgang Gabriel, Frank Grossmann, Jürgen Koy
  • Patent number: 8722009
    Abstract: A nanocrystalline supported or unsupported copper oxide with a residual carbon content of <10% and a BET surface area >95 m2/g. Further, a method for the production of a supported, or unsupported nanocrystalline copper oxide is disclosed, as well as the use thereof in catalysis, in particular in the steam reforming of methanol or in the hydrogenation of esters.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 13, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Hans-Joerg Woelk, Alfred Hagemeyer, Frank Grossmann, Oliver Wegner
  • Publication number: 20130281287
    Abstract: A nanocrystalline supported or unsupported copper oxide with a residual carbon content of <10% and a BET surface area >95 m2/g. Further, a method for the production of a supported, or unsupported nanocrystalline copper oxide is disclosed, as well as the use thereof in catalysis, in particular in the steam reforming of methanol or in the hydrogenation of esters.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 24, 2013
    Inventors: Hans-Joerg Woelk, Alfred Hagemeyer, Frank Grossmann, Oliver Wegner
  • Publication number: 20130102819
    Abstract: This invention relates to heterogeneous catalysts useful for selective hydrogenation of unsaturated hydrocarbons, comprising palladium and optionally a promoter, supported on a substrate, having an uncoated BET surface area of ?9 m2/g, the surface being coated with an ionic liquid. Also described are methods of making the catalysts and methods of selective hydrogenation of acetylene and/or dienes in front-end mixed olefin feed streams.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 25, 2013
    Inventors: Normen Szesni, Alfred Hagemeyer, Frank Grossmann, Richard Fischer, Michael Urbancic, Claus Lugmair, Mingyong Sun, Hongyi C. Hou, David Michael Lowe