Patents by Inventor Frank H. Hershkowitz

Frank H. Hershkowitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9923219
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell assembly at increased power density. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for increased power density while still maintaining a desired temperature differential within the fuel cell assembly.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 20, 2018
    Assignee: EXXONMOBILE RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9647284
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 9, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9556753
    Abstract: In various aspects, a method for producing electricity by operating two or more turbines in series is provided. The method can include introducing, at least part of, the exhaust from an upstream turbine into a combustion chamber of a downstream turbine. In one aspect, exhaust from the upstream turbine is introduced into the downstream turbine's combustion chamber via the downstream turbine's compression chamber.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: January 31, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Timothy A. Barckholtz, Frank H. Hershkowitz, Paul J. Berlowitz
  • Patent number: 9178234
    Abstract: In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: November 3, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz, Anita S. Lee
  • Publication number: 20150263364
    Abstract: In various aspects, systems and methods are provided for integrated operation of molten carbonate fuel cells with turbines for power generation. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. The increased chemical energy output can be used for additional power generation, such as by providing fuel for a hydrogen turbine.
    Type: Application
    Filed: June 26, 2014
    Publication date: September 17, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz, Anita S. Lee
  • Patent number: 9077006
    Abstract: Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9077005
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9077007
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 9077008
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell to reduce or minimize losses due to loss of heat energy. A molten carbonate fuel cell can be operated based on a desired ratio of heat generated by exothermic reactions in the fuel cell relative to heat consumed by endothermic reactions in the fuel cell and any optional integrated endothermic reaction stages.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 7, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20150089951
    Abstract: In various aspects, a method for producing electricity by operating two or more turbines in series is provided. The method can include introducing, at least part of, the exhaust from an upstream turbine into a combustion chamber of a downstream turbine. In one aspect, exhaust from the upstream turbine is introduced into the downstream turbine's combustion chamber via the downstream turbine's compression chamber.
    Type: Application
    Filed: September 15, 2014
    Publication date: April 2, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Timothy A. Barckholtz, Frank H. Hershkowitz, Paul J. Berlowitz
  • Publication number: 20150093676
    Abstract: Systems and methods are provided for incorporating molten carbonate fuel cells into a heat recovery steam generation system (HRSG) for production of electrical power while also reducing or minimizing the amount of CO2 present in the flue gas exiting the HRSG. An optionally multi-layer screen or wall of molten carbonate fuel cells can be inserted into the HRSG so that the screen of molten carbonate fuel cells substantially fills the cross-sectional area. By using the walls of the HRSG and the screen of molten carbonate fuel cells to form a cathode input manifold, the overall amount of duct or flow passages associated with the MCFCs can be reduced.
    Type: Application
    Filed: July 8, 2014
    Publication date: April 2, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140343173
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
    Type: Application
    Filed: June 26, 2014
    Publication date: November 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140342251
    Abstract: Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
    Type: Application
    Filed: June 26, 2014
    Publication date: November 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140302413
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 9, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140302414
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell to reduce or minimize losses due to loss of heat energy. A molten carbonate fuel cell can be operated based on a desired ratio of heat generated by exothermic reactions in the fuel cell relative to heat consumed by endothermic reactions in the fuel cell and any optional integrated endothermic reaction stages.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 9, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272637
    Abstract: In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272624
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas or hydrogen while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272619
    Abstract: Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). At least a portion of the anode exhaust can be recycled for use as part of anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells can be operated.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272625
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell assembly at increased power density. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for increased power density while still maintaining a desired temperature differential within the fuel cell assembly.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272628
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz