Patents by Inventor Frank Klaus Ennenbach

Frank Klaus Ennenbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11161075
    Abstract: A method (200) for desulfurization of a flue gas in a desulfurization unit of an industrial plant, includes receiving (202) a plurality of baseline parameters corresponding to the desulfurization unit of the industrial plant. The method further includes measuring (204), using a stack sensor, an emission value of sulfur oxides in the flue gas. The method also includes estimating (208), using a controller, a desirable value of a slurry parameter for desulfurization of the flue gas based on the measured emission value of the sulfur oxides. The method further includes determining (208), using the controller, at least one desulfurization parameter based on the desirable value of the slurry parameter. The method also includes controlling (210), using the controller, operation of the desulfurization unit based on the at least one desulfurization parameter to modify consumption of at least one of a slurry and an auxiliary power in the industrial plant.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: November 2, 2021
    Assignee: General Electric Company
    Inventors: Rachit Sharma, Chayan Mitra, Jayeshkumar Jayanarayan Barve, Venkatarao Ryali, Frank Klaus Ennenbach
  • Publication number: 20210086130
    Abstract: A method (200) for desulfurization of a flue gas in a desulfurization unit of an industrial plant, includes receiving (202) a plurality of baseline parameters corresponding to the desulfurization unit of the industrial plant. The method further includes measuring (204), using a stack sensor, an emission value of sulfur oxides in the flue gas. The method also includes estimating (208), using a controller, a desirable value of a slurry parameter for desulfurization of the flue gas based on the measured emission value of the sulfur oxides. The method further includes determining (208), using the controller, at least one desulfurization parameter based on the desirable value of the slurry parameter. The method also includes controlling (210), using the controller, operation of the desulfurization unit based on the at least one desulfurization parameter to modify consumption of at least one of a slurry and an auxiliary power in the industrial plant.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 25, 2021
    Inventors: Rachit Sharma, Chayan Mitra, Jayeshkumar Jayanarayan Barve, Venkatarao Ryali, Frank Klaus Ennenbach
  • Patent number: 10821400
    Abstract: A method for removing NOx from flue gas by SCR includes supplying a reagent for the SCR reaction of NOx into the flue gas, then contacting the flue gas with a catalyst. Supplying the reagent includes supplying a less than stoichiometric amount of reagent, and after contacting the flue gas with a catalyst a final NOx removal step is provided.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: November 3, 2020
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Olaf Stallmann, Wuyin Wang, Jean-Marc Gilbert Amann, Frank Klaus Ennenbach
  • Publication number: 20160045864
    Abstract: A method for removing NOx from flue gas by SCR includes supplying a reagent for the SCR reaction of NOx into the flue gas, then contacting the flue gas with a catalyst. Supplying the reagent includes supplying a less than stoichiometric amount of reagent, and after contacting the flue gas with a catalyst a final NOx removal step is provided.
    Type: Application
    Filed: July 30, 2015
    Publication date: February 18, 2016
    Inventors: Olaf STALLMANN, Wuyin WANG, Jean-Marc GILBERT, Frank Klaus ENNENBACH
  • Patent number: 8679232
    Abstract: A rotating packed bed RPB that includes a first and second packed bed both arranged on the same rotatable shaft. A gas is directed via a gas inlet through the first packed bed in co-current flow with a liquid in a radially outward direction towards the outer radius of the packed bed. The liquid enters the first packed bed via a first liquid inlet. The gas exiting the first packed bed is directed to the second packed bed and forced through it in a radially inward direction in counter-current flow with a liquid, which enters through a second liquid inlet. The arrangement allows an operation of the rotating packed bed with less energy compared to RPBs of the prior art operating in counter-current flow only. The apparatus allows low-cost design and high design flexibility.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 25, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Hartwig Wolf, Petar Aleksic, Frank Klaus Ennenbach, Mark Harvey Tothill
  • Publication number: 20140065560
    Abstract: The present disclosure relates to a method of operating a boiler system that includes an oxyfuel boiler in which an oxygen stream and a fuel stream are combusted to generate a stream of flue gas, an oxygen gas source producing the stream of oxygen for the boiler, and a gas processing unit for cleaning and compressing at least a portion of the stream of flue gas generated in the boiler for producing a stream of pressurized fluid comprising carbon dioxide. The method includes operating the boiler system, at least for a period of time, in an evaporation mode, in which a stream of oxygen from the oxygen gas source in liquid form is evaporated prior to being introduced in the boiler by transferring heat energy to the stream of liquid oxygen from a first stream of carbon dioxide of the gas processing unit. The present disclosure further relates to a boiler system for an oxy-fuel process as well as to a power plant comprising such a system.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 6, 2014
    Applicant: ALSTOM Technology Ltd.
    Inventors: Olaf STALLMANN, Frank Klaus Ennenbach, Christian Britz, Jutta Narjes, Markus Joerg Weitzel
  • Publication number: 20130319235
    Abstract: A rotating packed bed RPB that includes a first and second packed bed both arranged on the same rotatable shaft. A gas is directed via a gas inlet through the first packed bed in co-current flow with a liquid in a radially outward direction towards the outer radius of the packed bed. The liquid enters the first packed bed via a first liquid inlet. The gas exiting the first packed bed is directed to the second packed bed and forced through it in a radially inward direction in counter-current flow with a liquid, which enters through a second liquid inlet. The arrangement allows an operation of the rotating packed bed with less energy compared to RPBs of the prior art operating in counter-current flow only. The apparatus allows low-cost design and high design flexibility.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: ALSTOM Technology Ltd
    Inventors: Hartwig WOLF, Petar Aleksic, Frank Klaus Ennenbach, Mark Harvey Tothill