Patents by Inventor Frank Matsumoto

Frank Matsumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140191807
    Abstract: Various embodiments described herein provide systems and methods for improved performance for power amplifiers, particularly GaN power amplifiers. According to some embodiments, a power amplifier (e.g., GaN power amplifier) utilizes an adaptive closed loop control of the drain current of the power amplifier to achieve improved performance for the power amplifier.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 10, 2014
    Applicant: AVIAT U.S., INC.
    Inventors: Youming Qin, Frank Matsumoto, Andres Goytia, Cuong Nguyen
  • Patent number: 8766718
    Abstract: An exemplary system comprises a linearizer, a power amplifier, and a feedback block. The linearizer may be configured to use a predistortion control signal to add predistortion to a receive signal to generate a predistorted signal. The power amplifier may be configured to amplify power of the predistorted signal to generate a first amplified signal. The power amplifier may also add high side and low side amplifier distortion to the predistorted signal. The high side and low side amplifier distortion may cancel at least a portion of the predistortion. The feedback block may be configured to capture a feedback signal based on a previous amplified signal from the power amplifier, to determine high side and low side distortion of the captured feedback signal, and to generate the predistortion control signal based on the determined high side and low side distortion.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: July 1, 2014
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin
  • Publication number: 20120270507
    Abstract: Systems and methods for transceiver communication are discussed herein. An exemplary system comprises a first transceiver unit comprising a first attenuator, a filter module, a gain module, and an antenna. The first attenuator may be configured to attenuate a transmission signal from a second transceiver module over a coaxial cable. The transmission signal may comprise a primary component and a triple transit component. The first attenuator may further be configured to attenuate and provide a reflection signal over the coaxial cable to the second transceiver module. The reflection signal may be based on a reflection of at least a portion of the transmission signal. The filter module configured to filter the transmission signal. The gain module may be configured to increase the gain of the transmission signal. The antenna may be configured to transmit the transmission signal.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 25, 2012
    Inventors: Youming Qin, Frank Matsumoto, Emerick Vann
  • Publication number: 20120208477
    Abstract: Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.
    Type: Application
    Filed: January 11, 2012
    Publication date: August 16, 2012
    Inventors: Jayesh NATH, Ying Shen, Frank Matsumoto, Yougming Qin, David C.M. Pham
  • Publication number: 20120108188
    Abstract: In one example system, the system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Application
    Filed: October 20, 2011
    Publication date: May 3, 2012
    Inventors: Frank MATSUMOTO, Youming Qin, David C.M. Pham
  • Publication number: 20120093100
    Abstract: According to various embodiments, systems and methods are provided for improving signal quality and signal reliability over wireless communication using polarization diversity. Some embodiments use polarization diversity on a wireless channel to address and compensate for fading conditions such as non-frequency selective fading (also referred to as power fading, attenuation fading, and flat fading) and frequency selective fading (also referred to as multipath fading and dispersive fading). For example, some embodiments utilize a horizontal signal and a vertical signal on the same wireless channel when wirelessly communicating data between a transmitter and a receiver to address a fading condition.
    Type: Application
    Filed: September 15, 2011
    Publication date: April 19, 2012
    Inventors: Youming Qin, Frank Matsumoto