Patents by Inventor Frank Mett

Frank Mett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828720
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: November 28, 2023
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
  • Publication number: 20220196622
    Abstract: An electrochemical gas sensor, for acid analyte gases, has an absorbent, which is suitable for absorbing a reaction product formed at the electrode. The electrochemical gas sensor further has a boron 5 compound, which is suitable for reacting chemically with the acid analyte gas. A process determines the concentrations of acid gases. A process uses an electrochemical gas sensor for determining the concentrations of acid gases.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 23, 2022
    Inventor: Frank METT
  • Patent number: 10969361
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 6, 2021
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Frank Mett, Rigobert Chrzan, Sabrina Pilz
  • Publication number: 20210088470
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Application
    Filed: December 2, 2020
    Publication date: March 25, 2021
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Rigobert CHRZAN, Sabrina SOMMER, Frank METT, Andreas HENGSTENBERG
  • Patent number: 10883958
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: January 5, 2021
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Rigobert Chrzan, Sabrina Sommer, Frank Mett, Andreas Hengstenberg
  • Patent number: 10416108
    Abstract: An electrode (100) for an electrochemical gas sensor (1), wherein the electrode has a gas-permeable membrane (4). A graphene layer (3) is applied as an electrode material to the gas-permeable membrane (4). Such an electrode (1) is prepared, for example, by applying a dispersion of graphene or graphene oxide in a volatile liquid to the gas-permeable membrane and evaporating the volatile liquid.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: September 17, 2019
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Sabrina Sommer, Frank Mett
  • Publication number: 20190101506
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Frank METT, Rigobert CHRZAN, Sabrina SOMMER
  • Patent number: 10175191
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: January 8, 2019
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Andreas Nauber, Michael Sick, Gregor Steiner, Marie-Isabell Mattern-Frühwald, Frank Mett, Rigobert Chrzan, Sabrina Sommer
  • Patent number: 9964511
    Abstract: An electrochemical gas sensor (10) includes a housing (11) which has a number of electrodes (31, 32), i.e. at least one working electrode (31) and at least one counter electrode (32), in addition to a liquid electrolyte (60). At least one of the electrodes (31, 32) and/or the housing (11) are at least partially formed of an absorption agent composition. A method of detecting acid gases employs the electrochemical gas sensor (10).
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: May 8, 2018
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Sabrina Sommer, Frank Mett
  • Patent number: 9778220
    Abstract: An electrochemical gas sensor (10) with a housing (11), with an electrolyte reservoir (12) and with a plurality of electrodes (31, 32, 33). The electrodes (31, 32, 33) include at least one working electrode (31), one counterelectrode (32) and one reference electrode (33). The electrolyte reservoir (12) is filled with a liquid electrolyte (60). All of the electrodes (31, 32, 33) are arranged at or on a common electrode carrier (20).
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 3, 2017
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Frank Mett, Sabrina Sommer
  • Patent number: 9726633
    Abstract: An electrochemical gas sensor system (100) detects the concentration of a harmful gas in a measuring environment (70). The electrochemical gas sensor system (100) contains a voltage generator (19) and an electrochemical gas sensor (1). The electrochemical gas sensor (1) has a sensor housing (2) and a gas inlet (18). A measuring electrode (3), an auxiliary electrode (5), a reference electrode (17), a first generator electrode (13) and a second generator electrode (14) are in an electrolyte liquid (11) in the sensor housing (2). A salt (28) (halide) of a halogen is dissolved in the electrolyte liquid (11). The first generator electrode (13) and the second generator electrode (14) are connected to the voltage generator (19) to form a galvanic source. The galvanic source causes the salt (28) (halide) to react to form a halogen (28?). A defined, largely stable reference voltage potential becomes established on the reference electrode (17).
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: August 8, 2017
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Frank Mett, Kerstin Lichtenfeldt, Johanna Jörn
  • Publication number: 20170082569
    Abstract: An electrode (100) for an electrochemical gas sensor (1), wherein the electrode has a gas-permeable membrane (4). A graphene layer (3) is applied as an electrode material to the gas-permeable membrane (4). Such an electrode (1) is prepared, for example, by applying a dispersion of graphene or graphene oxide in a volatile liquid to the gas-permeable membrane and evaporating the volatile liquid.
    Type: Application
    Filed: May 13, 2015
    Publication date: March 23, 2017
    Inventors: Sabrina SOMMER, Frank METT
  • Publication number: 20170059509
    Abstract: An electrochemical gas sensor (10) includes a housing (11) which has a number of electrodes (31, 32), i.e. at least one working electrode (31) and at least one counter electrode (32), in addition to a liquid electrolyte (60). At least one of said electrodes (31, 32) and/or the housing (11) are at least partially formed of an absorption agent composition. A method of detecting acid gases employs the electrochemical gas sensor (10).
    Type: Application
    Filed: February 11, 2015
    Publication date: March 2, 2017
    Applicant: Dräger Safety AG & Co. KGaA
    Inventors: Sabrina SOMMER, Frank METT
  • Publication number: 20160116430
    Abstract: A liquid electrolyte, for an electrochemical gas sensor for detecting NH3 or gas mixtures containing NH3, contains at least one solvent, one conductive salt and/or one organic mediator. The conductive salt is an ionic liquid, an inorganic salt, an organic salt or a mixture thereof. The electrolyte preferably is comprised of (I) water, propylene carbonate, ethylene carbonate or a mixture thereof as solvent; (ii) LiCl, KCl, tetrabutylammonium toluenesulphonate or 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate as conductive salt; and (iii) tert-butylhydroquinone or anthraquinone-2-sulphonate as organic mediator.
    Type: Application
    Filed: September 1, 2014
    Publication date: April 28, 2016
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Rigobert CHRZAN, Sabrina SOMMER, Frank METT, Andreas HENGSTENBERG
  • Publication number: 20160103092
    Abstract: An electrochemical gas sensor (10) has a housing (20), a working electrode (51), a counterelectrode (52) and a reference electrode (53). The housing (20) has an electrolyte reservoir (30), a gas inlet orifice (21) and at least one gas outlet orifice (22). The electrolyte reservoir (30) is filled with a liquid electrolyte (40). The gas sensor (10) has a counterelectrode carrier (26). The counterelectrode (52) is suspended on the counterelectrode carrier (26) in such a way that the counterelectrode (52) is suspended in the electrolyte reservoir (30) and the electrolyte (40) flows around the counterelectrode (52) on all sides. Preferably, the electrolyte includes (I) a solvent, e.g. water, propylene carbonate, ethylene carbonate or mixtures thereof; (ii) a conductive salt, especially an ionic liquid; and/or (iii) an organic mediator, for example substituted quinones, anthraquinones, etc.
    Type: Application
    Filed: September 1, 2014
    Publication date: April 14, 2016
    Inventors: Andreas NAUBER, Michael SICK, Gregor STEINER, Marie-Isabell MATTERN-FRÜHWALD, Frank METT, Rigobert CHRZAN, Sabrina SOMMER
  • Publication number: 20150369773
    Abstract: An electrochemical gas sensor system (100) detects the concentration of a harmful gas in a measuring environment (70). The electrochemical gas sensor system (100) contains a voltage generator (19) and an electrochemical gas sensor (1). The electrochemical gas sensor (1) has a sensor housing (2) and a gas inlet (18). A measuring electrode (3), an auxiliary electrode (5), a reference electrode (17), a first generator electrode (13) and a second generator electrode (14) are in an electrolyte liquid (11) in the sensor housing (2). A salt (28) (halide) of a halogen is dissolved in the electrolyte liquid (11). The first generator electrode (13) and the second generator electrode (104) are connected to the voltage generator (19) to form a galvanic source. The galvanic source causes the salt (28) (halide) to react to form a halogen (28?). A defined, largely stable reference voltage potential becomes established on the reference electrode (17).
    Type: Application
    Filed: June 9, 2015
    Publication date: December 24, 2015
    Inventors: Frank METT, Kerstin LICHTENFELDT, Johanna JÖRN
  • Publication number: 20150241382
    Abstract: An electrochemical gas sensor (10) with a housing (11), with an electrolyte reservoir (12) and with a plurality of electrodes (31, 32, 33). The electrodes (31, 32, 33) include at least one working electrode (31), one counterelectrode (32) and one reference electrode (33). The electrolyte reservoir (12) is filled with a liquid electrolyte (60). All of the electrodes (31, 32, 33) are arranged at or on a common electrode carrier (20).
    Type: Application
    Filed: February 20, 2015
    Publication date: August 27, 2015
    Inventors: Frank METT, Sabrina SOMMER
  • Patent number: 8696588
    Abstract: A device (1) and a corresponding method are provided for determining and/or monitoring the respiration rate based on measurement with more than one sensor (5, 7, 9, 13, 15). The device may be part of a monitor for determining and/or monitoring the respiration rate. The second and/or additional sensors are different form the first sensor and have a different manor of operation from the first sensor.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: April 15, 2014
    Assignee: Dräger Medical GmbH
    Inventors: Hans-Ullrich Hansmann, Tilman von Blumenthal, Peter Tschuncky, Andreas Hengstenberg, Frank Mett, Uwe Kühn, Frank Franz, Kai Kück, Steffen Schmitt
  • Patent number: 8268161
    Abstract: An electrochemical sensor is provided especially for gases. The electrochemical sensor has a mediator compound, which is both dissolved in an electrolyte (9) in a saturated form and is present as an excess solid (10) in the electrolyte (9).
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: September 18, 2012
    Assignee: Drägerwerk AG & Co. KGaA
    Inventors: Sabrina Sommer, Herbert Kiesele, Frank Mett
  • Patent number: 8187437
    Abstract: A mediator-based electrochemical gas sensor reacts selectively with hydrogen sulfide. The gas sensor has an electrolyte solution (9), which contains a mediator compound in the form of metallates of transition metals.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: May 29, 2012
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Herbert Kiesele, Frank Mett, Sabrina Sommer