Patents by Inventor Frank Moeller

Frank Moeller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965676
    Abstract: The invention relates to a hot-air fan including a fan device for generating an air flow, a heating device for heating the air flow, and a control unit connected to the fan device and to the heating device. In this process, the control unit is designed to control the fan device in such a manner that, when the heating device is switched on, the fan device generates a starting air flow that is reduced to an operating air flow. The invention also relates to a method for operating the hot-air fan, including the steps of switching on the heating device and generating a starting air flow that is reduced to an operating air flow.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 23, 2024
    Assignee: Steinel GmbH
    Inventors: Frank Albri, Thomas Möller, Torsten Born, Heinrich Hagemeier, Tobias Zubke, Thomas Schreckenberger
  • Patent number: 11905927
    Abstract: Systems, methods, and computer program products for monitoring a wind turbine (10). The system receives a signal (426) indicative of a pitch force being applied to a blade (20) of a wind turbine (10). The signal (426) is sampled to generate a discrete time-domain signal (426) including a plurality of pitch force samples. Samples are selected for analysis using a sampling window (326) that excludes samples obtained under operating conditions determined to be detrimental to obtaining good data. The selected samples are processed to generate a spectral density (150) of the signal (426), and the frequency content of the spectral density (150) analysed to determine the condition of one or more components of the wind turbine (10). If the analysis indicates that a component of the wind turbine (10) needs attention, the system generates an alarm.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: February 20, 2024
    Assignee: Vestas Wind Systems A/S
    Inventor: Frank Møller Hansen
  • Patent number: 11814951
    Abstract: An apparatus for determining properties of fluid flowing into a well includes an inflow channel providing a path for fluid to a pipe, a heater arranged to heat at least part of the fluid in the inflow channel, and a temperature sensor arranged to measure the temperature of the fluid in the inflow channel.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: November 14, 2023
    Assignee: STATOIL PETROLEUM AS
    Inventors: Robert Aasheim, Dominik Andreas Breu, Frank Møller Nielsen, Bjarne Bugten, Kjetil Johannessen, Einar Skavland Idsø, Lisbeth Vold
  • Publication number: 20230129895
    Abstract: Systems, methods, and computer program products for monitoring a wind turbine (10). The system receives a signal (426) indicative of a pitch force being applied to a blade (20) of a wind turbine (10). The signal (426) is sampled to generate a discrete time-domain signal (426) including a plurality of pitch force samples. Samples are selected for analysis using a sampling window (326) that excludes samples obtained under operating conditions determined to be detrimental to obtaining good data. The selected samples are processed to generate a spectral density (150) of the signal (426), and the frequency content of the spectral density (150) analysed to determine the condition of one or more components of the wind turbine (10). If the analysis indicates that a component of the wind turbine (10) needs attention, the system generates an alarm.
    Type: Application
    Filed: April 12, 2021
    Publication date: April 27, 2023
    Inventor: Frank Møller Hansen
  • Patent number: 11208983
    Abstract: Wind turbine pitch actuator mounting structure A mounting structure is described for attaching a pitch actuator to a hub of a wind turbine. The mounting structure has one or more legs each having a proximal end and a distal end, and a flexible intermediate portion between the proximal and distal ends. The mounting structure further comprises an actuator attachment portion for attaching to a wind turbine blade pitch actuator. The actuator attachment portion is arranged at the distal end(s) of the one or more legs. The proximal end(s) of the one or more legs are configured for attachment to a wind turbine hub. The flexible intermediate portion(s) of the one or more legs are configured to flex in use to absorb loads acting on the pitch actuator. The mounting structure therefore allows the pitch actuator to pivot in a first plane by virtue of the flexible legs.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: December 28, 2021
    Assignee: Vestas Wind Systems A/S
    Inventors: Simon Kabus, Jacob Hviid Nielsen, Jesper Lykkegaard Neubauer, Erik Garde, Lasse Køgs Andersen, Frank Møller Hansen
  • Publication number: 20210207574
    Abstract: Wind turbine pitch actuator mounting structure A mounting structure is described for attaching a pitch actuator to a hub of a wind turbine. The mounting structure has one or more legs each having a proximal end and a distal end, and a flexible intermediate portion between the proximal and distal ends. The mounting structure further comprises an actuator attachment portion for attaching to a wind turbine blade pitch actuator. The actuator attachment portion is arranged at the distal end(s) of the one or more legs. The proximal end(s) of the one or more legs are configured for attachment to a wind turbine hub. The flexible intermediate portion(s) of the one or more legs are configured to flex in use to absorb loads acting on the pitch actuator. The mounting structure therefore allows the pitch actuator to pivot in a first plane by virtue of the flexible legs.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 8, 2021
    Applicant: Vestas Wind Systems A/S
    Inventors: Simon Kabus, Jacob Hviid Nielsen, Jesper Lykkegaard Neubauer, Erik Garde, Lasse Køgs Andersen, Frank Møller Hansen
  • Patent number: 10920747
    Abstract: There is provided a method for controlling a hydraulic pitch force system (220) so as to reduce or eliminate a decrease in hydraulic oil pressure (241) if a hydraulic system parameter value is outside a hydraulic system parameter range, the method comprising: Obtaining (690) the hydraulic system parameter value, and operating the hydraulic pitch force system (220) according to a reduced mode (692) if the hydraulic system parameter value is outside the hydraulic system parameter range, wherein in the reduced mode one or more pitch based activities are reduced (694) or suspended. An advantage thereof may be that it enables keeping the wind turbine in production in certain instances rather than shutting down the wind turbine. In aspects, there is furthermore presented a computer program product, a pitch control system (250) and a wind turbine (100).
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: February 16, 2021
    Assignee: Vestas Wind Systems A/S
    Inventors: Martin Ansbjerg Kjær, Frank Møller Hansen, Jacob Hviid Nielsen, Jesper Lykkegaard Neubauer, Poul Brandt Christensen, Fabio Caponetti, Christian Skallebæk, Robert Grøn-Stevens, Kasper Zinck Østergaard
  • Publication number: 20190122512
    Abstract: A system for monitoring access to a vehicle has a control unit, a plurality of sensor devices configured to be fastened to an outer side of the vehicle, are coupled to the control unit and are configured to capture objects in a three-dimensional manner in a field of view of the sensor devices, and at least one signal output device coupled to the control unit. The sensor devices are configured to capture objects in spatial areas predetermined by the relevant sensor devices and to transmit capture data representing the capture of objects to the control unit. The control unit is configured to receive and use the capture data to detect an object approaching a predefined monitoring area covered by the predetermined spatial areas of the sensor devices. The control unit is configured to transmit a control signal to the signal output device if an object is detected.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 25, 2019
    Inventors: Marc Wesseloh, Gerd Stahl, Frank Möller
  • Publication number: 20190078555
    Abstract: There is provided a method for controlling a hydraulic pitch force system (220) so as to reduce or eliminate a decrease in hydraulic oil pressure (241) if a hydraulic system parameter value is outside a hydraulic system parameter range, the method comprising: Obtaining (690) the hydraulic system parameter value, and operating the hydraulic pitch force system (220) according to a reduced mode (692) if the hydraulic system parameter value is outside the hydraulic system parameter range, wherein in the reduced mode one or more pitch based activities are reduced (694) or suspended. An advantage thereof may be that it enables keeping the wind turbine in production in certain instances rather than shutting down the wind turbine. In aspects, there is furthermore presented a computer program product, a pitch control system (250) and a wind turbine (100).
    Type: Application
    Filed: October 11, 2016
    Publication date: March 14, 2019
    Applicants: Vestas Wind Systems A/S, Vestas Wind Systems A/S
    Inventors: Martin Ansbjerg Kjær, Frank Møller Hansen, Jacob Hviid Nielsen, Jesper Lykkegaard Neubauer, Poul Brandt Christensen, Fabio Caponetti, Christian Skallebæk, Robert Grøn-Stevens, Kasper Zinck Østergaard
  • Publication number: 20180245453
    Abstract: An apparatus for determining properties of fluid flowing into a well includes an inflow channel providing a path for fluid to a pipe, a heater arranged to heat at least part of the fluid in the inflow channel, and a temperature sensor arranged to measure the temperature of the fluid in the inflow channel.
    Type: Application
    Filed: May 10, 2016
    Publication date: August 30, 2018
    Applicant: STATOIL PETROLEUM AS
    Inventors: Robert AASHEIM, Dominik Andreas BREU, Frank Møller NIELSEN, Bjarne BUGTEN, Kjetil JOHANNESSEN, Einar Skavland IDSØ, Lisbeth VOLD
  • Patent number: 9564786
    Abstract: A generator for a wind turbine is disclosed. The generator comprises a rotor configured to rotate about a rotational axis, and at least one stator arranged next to the rotor. Each stator comprises at least one flux-generating module facing the rotor but spaced therefrom, thereby forming an air gap between the rotor and each flux-generating module. Each stator also comprises at least one bearing unit, each bearing unit comprising a body defining a cavity with an open end facing the rotor. The generator further comprises a source of pressurized fluid communicating with each bearing unit, and the body of each bearing unit directs the fluid towards the rotor to help maintain the air gap between the rotor and each flux-generating module. Thereby the air gap between the rotor and the flux-generating modules is controlled by means of the fluid bearing units. The invention further provides a wind turbine comprising such a generator.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: February 7, 2017
    Assignee: Vestas Wind Systems A/S
    Inventors: Michael Staghøj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen, Jörg Wadehn
  • Patent number: 9362787
    Abstract: A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighboring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: June 7, 2016
    Assignee: Vestas Wind Systems A/S
    Inventors: Michael Staghøj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen
  • Patent number: 9124153
    Abstract: Disclosed is a direct drive generator for a wind turbine, the generator including a rotor, a stator configured to remain stationary relative to the rotor, and at least one bearing connected to the stator. The rotor includes at least one rotor part extending circumferentially about an axis of rotation and a plurality of active materials arranged on a side of the at least one rotor part. The stator includes at least one stator part extending circumferentially about the axis of rotation and positioned adjacent to the at least one rotor part, and at least one winding arrangement supported by the at least one stator part and facing the plurality of active materials. The bearing is flexibly connected to the at least one stator part, wherein the bearing abuts the rotor part to help maintain a gap between the at least one winding arrangement and the active materials.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 1, 2015
    Assignee: Vestas Wind Systems A/S
    Inventors: Frank Møller Hansen, Jonas Kristensen
  • Patent number: 9086089
    Abstract: A screwing device includes a threaded hole that extends from an insertion opening to an end of the screwing device, which end is opposite the insertion opening. In the region of the insertion opening a first radial sealing element is arranged that by way of the insertion opening extends outwards in an axial direction of the hole. Spaced apart from the first sealing element in an axial direction of the hole a second radial sealing element is arranged in the screwing device with the internal diameter of the second radial sealing element being smaller than the external diameter of the threaded hole. In this manner a screwing device may be provided that is self-locking, exchangeable, and fluid-proof and that is suitable especially for vehicles and in particular for aircraft.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 21, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Gerd Stahl, Frank Moeller
  • Publication number: 20140165370
    Abstract: A screwing device includes a threaded hole that extends from an insertion opening to an end of the screwing device, which end is opposite the insertion opening. In the region of the insertion opening a first radial sealing element is arranged that by way of the insertion opening extends outwards in an axial direction of the hole. Spaced apart from the first sealing element in an axial direction of the hole a second radial sealing element is arranged in the screwing device with the internal diameter of the second radial sealing element being smaller than the external diameter of the threaded hole. In this manner a screwing device may be provided that is self-locking, exchangeable, and fluid-proof and that is suitable especially for vehicles and in particular for aircraft.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 19, 2014
    Applicant: AIRBUS OPERATIONS GMBH
    Inventors: Gerd Stahl, Frank Moeller
  • Publication number: 20130285501
    Abstract: A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighbouring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained.
    Type: Application
    Filed: January 5, 2011
    Publication date: October 31, 2013
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Michael Staghoj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen
  • Publication number: 20130277986
    Abstract: A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby forming an air gap between the rotor (3) and each flux-generating module (9). Each stator (4) also comprises at least one bearing unit (12), each bearing unit (12) comprising a body (16) defining a cavity (14) with an open end facing the rotor (3). The generator (5) further comprises a source of pressurized fluid communicating with each bearing unit (12), and the body (16) of each bearing unit (12) directs the fluid towards the rotor (3) to help maintain the air gap between the rotor (3) and each flux-generating module (9). Thereby the air gap between the rotor (3) and the flux-generating modules (9) is controlled by means of the fluid bearing units (12).
    Type: Application
    Filed: January 5, 2011
    Publication date: October 24, 2013
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Michael Staghøj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen, Jörg Wadehn
  • Publication number: 20130277985
    Abstract: The present invention relates to a direct drive generator (1) for a wind turbine, the generator comprising a rotor (6) configured to rotate about an axis of rotation, a stator (2) configured to remain stationary relative to the rotor, and at least one bearing (5) connected to the stator (2). The rotor (6) comprises at least one rotor part (7) extending circumferentially about the axis of rotation and a plurality of active materials arranged on a side of the at least one rotor part. The stator (2) comprises at least one stator part (3) extending circumferentially about the axis of rotation and positioned adjacent to the at least one rotor part (7), and at least one winding arrangement (4) supported by the at least one stator part (3) and facing the plurality of active materials. The bearing (5) is flexibly connected to the at least one stator part (7), wherein the bearing (5) abuts the rotor part (3) to help maintain a gap (10) between the at least one winding arrangement (4) and the active materials.
    Type: Application
    Filed: January 5, 2011
    Publication date: October 24, 2013
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Frank Møller Hansen, Jonas Kristensen
  • Publication number: 20130270834
    Abstract: A generator (5) for a wind turbine (1) and a wind turbine (1) are disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3), each stator (4) comprising at least one flux-generating module (9) facing the rotor (3) but spaced therefrom. The flux-generating module(s) (9) is/are mounted on a stator support structure (7, 10). The stator support structure (7, 10) defines a pre-loaded spring force acting against magnetic forces occurring between the rotor (3) and the flux-generating module(s) (9) during operation of the generator (5). The preloaded spring force is adjustable, e.g. by means of a piston arrangement (17). Thereby it is possible to maintain a preloaded spring force which is capable of acting against the magnetic forces occurring between the rotor (3) and the flux-generating module(s) (9), even if operating conditions are changed.
    Type: Application
    Filed: January 5, 2011
    Publication date: October 17, 2013
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Michael Staghøj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen
  • Patent number: 8550199
    Abstract: A method is provided for controlling operation of a pedal cycle (10) having a rear hub-mounted electro-mechanical transmission arrangement in which a chain-driven rear sprocket (80), an input electrical machine (120) and the hub (100) are each coupled to a respective branch of a three-branch epicyclic gear set (140). Allowing for natural variations in input torque by a cyclist over a cycle of the crank arms (50), a substantially constant current is caused to exist in the input electrical machine (120) such that a change in torque applied by the cyclist results in a change in transmission ratio between the rear sprocket (80) and the hub (100), thereby providing a form of automatic and continuously variable transmission for the pedal cycle (10).
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 8, 2013
    Assignee: Nexxtdrive Limited
    Inventors: Frank Moeller, Martin Weber