Patents by Inventor Frank S. Johnson

Frank S. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069742
    Abstract: One aspect of the application can provide a system and method for replacing a failing node with a spare node in a non-uniform memory access (NUMA) system. During operation, in response to determining that a node-migration condition is met, the system can initialize a node controller of the spare node such that accesses to a memory local to the spare node are to be processed by the node controller, quiesce the failing node and the spare node to allow state information of processors on the failing node to be migrated to processors on the spare node, and subsequent to unquiescing the failing node and the spare node, migrate data from the failing node to the spare node while maintaining cache coherence in the NUMA system and while the NUMA system remains in operation, thereby facilitating continuous execution of processes previously executed on the failing node.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Thomas Edward McGee, Brian J. Johnson, Frank R. Dropps, Derek S. Schumacher, Stuart C. Haden, Michael S. Woodacre
  • Patent number: 9123570
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: September 1, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Angelo Pinto, Frank S. Johnson, Benjamin P. McKee, Shaofeng Yu
  • Publication number: 20130292780
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: Angelo PINTO, Frank S. JOHNSON, Benjamin P. MCKEE, Shaofeng YU
  • Patent number: 8558318
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Angelo Pinto, Frank S Johnson, Benjamin P McKee, Shaofeng Yu
  • Patent number: 8404592
    Abstract: Methods for fabricating semiconductor structures, such as fin structures of FinFET transistors, are provided. In one embodiment, a method comprises providing a semiconductor substrate and forming a plurality of mandrels overlying the semiconductor substrate. Each of the mandrels has sidewalls. L-shaped spacers are formed about the sidewalls of the mandrels. Each L-shaped spacer comprises a rectangular portion disposed at a base of a mandrel and an orthogonal portion extending from the rectangular portion. Each L-shaped spacer also has a spacer width. The orthogonal portions are removed from each of the L-shaped spacers leaving at least a portion of the rectangular portions. The semiconductor substrate is etched to form fin structures, each fin structure having a width substantially equal to the spacer width.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: March 26, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Scott Luning, Frank S. Johnson
  • Patent number: 8268727
    Abstract: Methods of fabricating a semiconductor device on and in a semiconductor substrate are provided. In accordance with an exemplary embodiment of the invention, one method comprises forming a sacrificial mandrel overlying the substrate, wherein the sacrificial mandrel has sidewalls. Sidewall spacers are formed adjacent the sidewalls of the sacrificial mandrel, the sidewall spacers having an upper portion and a lower portion. The upper portion of the sidewall spacers is removed. The sacrificial mandrel is removed and the semiconductor substrate is etched using the lower portion of the sidewall spacers as an etch mask.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: September 18, 2012
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Frank S. Johnson, Douglas Bonser
  • Publication number: 20110180881
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Boundary regions between (100) and (110) regions must be sufficiently narrow to support high gate densities and SRAM cells appropriate for the technology node. This invention provides a method of forming an integrated circuit (IC) substrate containing regions with two different silicon crystal lattice orientations. Starting with a (110) direct silicon bonded (DSB) layer on a (100) substrate, regions in the DSB layer are amorphized and recrystallized on a (100) orientation by solid phase epitaxy (SPE). Lateral templating by the DSB layer is reduced by amorphization of the upper portion of the (110) regions through a partially absorbing amorphization hard mask. Boundary morphology is less than 40 nanometers wide. An integrated circuit formed with the inventive method is also disclosed.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Angelo Pinto, Frank S. Johnson
  • Patent number: 7960280
    Abstract: An improved method of forming a fully silicided (FUSI) gate in both NMOS and PMOS transistors of the same MOS device is disclosed. In one example, the method comprises forming a first silicide in at least a top portion of a gate electrode of the PMOS devices and not over the NMOS devices. The method further comprises concurrently forming a second silicide in at least a top portion of a gate electrode of both the NMOS and PMOS devices, and forming a FUSI gate silicide of the gate electrodes. In one embodiment, the thickness of the second silicide is greater than the first silicide by an amount which compensates for a difference in the rates of silicide formation between the NMOS and PMOS devices.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 14, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Freidoon Mehrad, Frank S. Johnson
  • Patent number: 7943451
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Boundary regions between (100) and (110) regions must be sufficiently narrow to support high gate densities and SRAM cells appropriate for the technology node. This invention provides a method of forming an integrated circuit (IC) substrate containing regions with two different silicon crystal lattice orientations. Starting with a (110) direct silicon bonded (DSB) layer on a (100) substrate, regions in the DSB layer are amorphized and recrystallized on a (100) orientation by solid phase epitaxy (SPE). Lateral templating by the DSB layer is reduced by amorphization of the upper portion of the (110) regions through a partially absorbing amorphization hard mask. Boundary morphology is less than 40 nanometers wide. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 17, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Angelo Pinto, Frank S. Johnson
  • Publication number: 20110108893
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Application
    Filed: January 14, 2011
    Publication date: May 12, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Angelo Pinto, Frank S. Johnson, Benjamin P. McKee, Shaofeng Yu
  • Patent number: 7892906
    Abstract: A method for making CMOS transistors that includes forming a NMOS transistor and a PMOS transistor having an undoped polysilicon gate electrode and a hardmask. The method also includes forming a layer of insulating material and then removing the hardmasks and a portion of the layer of insulating material. A layer of silicidation metal is formed and a first silicide anneal changes the undoped polysilicon gate electrodes into partially silicided gate electrodes. Dopants of a first type and a second type are implanted into the partially silicided gate electrode of the PMOS and NMOS transistors and a second silicide anneal is performed to change the doped partially silicided gate electrodes into fully silicided gate electrodes.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 22, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Freidoon Mehrad, Frank S. Johnson
  • Patent number: 7892908
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 22, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Angelo Pinto, Frank S. Johnson, Benjamin P. McKee, Shaofeng Yu
  • Publication number: 20110021026
    Abstract: Methods for fabricating semiconductor structures, such as fin structures of FinFET transistors, are provided. In one embodiment, a method comprises providing a semiconductor substrate and forming a plurality of mandrels overlying the semiconductor substrate. Each of the mandrels has sidewalls. L-shaped spacers are formed about the sidewalls of the mandrels. Each L-shaped spacer comprises a rectangular portion disposed at a base of a mandrel and an orthogonal portion extending from the rectangular portion. Each L-shaped spacer also has a spacer width. The orthogonal portions are removed from each of the L-shaped spacers leaving at least a portion of the rectangular portions. The semiconductor substrate is etched to form fin structures, each fin structure having a width substantially equal to the spacer width.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Scott LUNING, Frank S. Johnson
  • Publication number: 20110014791
    Abstract: Methods for fabricating FinFET structures having gate structures of different gate widths are provided. The methods include the formation of sidewall spacers of different thicknesses to define gate structures of the FinFET structures with different gate widths. The width of a sidewall spacer is defined by the height of the structure about which the sidewall spacer is formed, the thickness of the sidewall spacer material layer from which the spacer is formed, and the etch parameters used to etch the sidewall spacer material layer. By forming structures of varying height, forming the sidewall spacer material layer of varying thickness, or a combination of these, sidewall spacers of varying width can be fabricated and subsequently used as an etch mask so that gate structures of varying widths can be formed simultaneously.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Frank S. JOHNSON, Richard T. SCHULTZ
  • Publication number: 20100308382
    Abstract: Methods are provided for fabricating semiconductor structures with an etch resistant layer that reduces undercuts in a silicon oxide layer of a semiconductor substrate. The semiconductor substrate is provided having the silicon oxide layer. The etch resistant layer is formed which uses at least a portion of the silicon oxide layer. A silicon-comprising material layer is formed overlying the etch resistant layer. The silicon-comprising material layer has an etch rate greater than an etch rate of the etch resistant layer when subjected to an etchant. The silicon-comprising material layer is etched with an etchant to form a fin structure on the silicon oxide layer. The etch resistant layer may be formed by ion implantation, diffusing nitrogen-supplying species into the silicon oxide layer, or forming an insulator material layer overlying the silicon oxide layer.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Frank S. JOHNSON, Andreas KNORR
  • Publication number: 20100308381
    Abstract: Methods for fabricating FinFET structures with stress-inducing source/drain-forming spacers and FinFET structures having such spacers are provided herein. In one embodiment, a method for fabricating a FinFET structure comprises fabricating a plurality of parallel fins overlying a semiconductor substrate. Each of the fins has sidewalls. A gate structure is fabricated overlying a portion of each of the fins. The gate structure has sidewalls and overlies channels within the fins. Stress-inducing sidewall spacers are formed about the sidewalls of the fins and the sidewalls of the gate structure. The stress-inducing sidewall spacers induce a stress within the channels. First conductivity-determining ions are implanted into the fins using the stress-inducing sidewall spacers and the gate structure as an implantation mask to form source and drain regions within the fins.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Scott LUNING, Frank S. JOHNSON, Michael J. HARGROVE
  • Publication number: 20100308440
    Abstract: Methods are provided for substantially preventing and filling overetched regions in a silicon oxide layer of a semiconductor substrate. The overetched regions may be formed as a result of overetching of the silicon oxide layer during etching of an overlying silicon-comprising material layer to form a silicon-comprising structure. An etch resistant spacer may be formed after the initial or subsequent overetches. The etch resistant spacer may be formed by depositing an etch resistant material into the overetched region and etching the deposited etch resistant material to leave residual etch resistant material forming the etch resistant spacer. The etch resistant spacer may also be formed by exposing the silicon oxide layer in the overetched region to a nitrogen-supplying material to form a silicon oxynitride etch resistant spacer.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Frank S. JOHNSON, Andreas KNORR
  • Publication number: 20100308409
    Abstract: FinFET structures with fins having stress-inducing caps and methods for fabricating such FinFET structures are provided. In an exemplary embodiment, a method for forming stressed structures comprises forming a first stress-inducing material overlying a semiconductor material and forming spacers overlying the first stress-inducing material. The first stress-inducing material is etched using the spacers as an etch mask to form a plurality of first stress-inducing caps. The semiconductor material is etched using the plurality of first stress-inducing caps as an etch mask.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Frank S. Johnson, Scott Luning, Michael J. Hargrove
  • Patent number: 7829466
    Abstract: Methods for fabricating FinFET structures having gate structures of different gate widths are provided. The methods include the formation of sidewall spacers of different thicknesses to define gate structures of the FinFET structures with different gate widths. The width of a sidewall spacer is defined by the height of the structure about which the sidewall spacer is formed, the thickness of the sidewall spacer material layer from which the spacer is formed, and the etch parameters used to etch the sidewall spacer material layer. By forming structures of varying height, forming the sidewall spacer material layer of varying thickness, or a combination of these, sidewall spacers of varying width can be fabricated and subsequently used as an etch mask so that gate structures of varying widths can be formed simultaneously.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 9, 2010
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Frank S. Johnson, Richard T. Schultz
  • Publication number: 20100267238
    Abstract: Methods of fabricating a semiconductor device on and in a semiconductor substrate are provided. In accordance with an exemplary embodiment of the invention, one method comprises forming a sacrificial mandrel overlying the substrate, wherein the sacrificial mandrel has sidewalls. Sidewall spacers are formed adjacent the sidewalls of the sacrificial mandrel, the sidewall spacers having an upper portion and a lower portion. The upper portion of the sidewall spacers is removed. The sacrificial mandrel is removed and the semiconductor substrate is etched using the lower portion of the sidewall spacers as an etch mask.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Frank S. Johnson, Douglas Bonser