Patents by Inventor Frank Schuberth

Frank Schuberth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10851637
    Abstract: A method of predicting behavior of a drilling assembly includes: generating a mathematical representation of a geometry of each of a plurality of components of a drilling assembly, the plurality of components including a plurality of cutters and one or more additional components configured to at least one of: support the plurality of cutters and operably connect the plurality of cutters to the drill string, the one or more additional components including a drill bit crown; simulating one or more operating conditions incident on the drilling assembly representation, and simulating an interaction between the plurality of components and an earth formation; and predicting physical responses of the drilling assembly representation to the one or more conditions.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: December 1, 2020
    Assignee: BAKER HUGHES
    Inventors: Christian Herbig, Hanno Reckmann, Bernhard Meyer-Heye, Frank Schuberth, Jayesh Rameshlal Jain, Jonathan Mackey Hanson, Carmel Zouheir El Hakam, Reed W. Spencer
  • Publication number: 20190169972
    Abstract: A method of predicting behavior of a drilling assembly includes: generating a mathematical representation of a geometry of each of a plurality of components of a drilling assembly, the plurality of components including a plurality of cutters and one or more additional components configured to at least one of: support the plurality of cutters and operably connect the plurality of cutters to the drill string, the one or more additional components including a drill bit crown; simulating one or more operating conditions incident on the drilling assembly representation, and simulating an interaction between the plurality of components and an earth formation; and predicting physical responses of the drilling assembly representation to the one or more conditions.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Christian Herbig, Hanno Reckmann, Bernhard Meyer-Heye, Frank Schuberth, Jayesh Rameshlal Jain, Jonathan Mackey Hanson, Carmel Zouheir El Hakam, Reed W. Spencer
  • Patent number: 10227857
    Abstract: A method of predicting behavior of a drilling assembly includes: generating a mathematical representation of a geometry of each of a plurality of components of a drilling assembly, the plurality of components including a plurality of cutters and one or more additional components configured to at least one of: support the plurality of cutters and operably connect the plurality of cutters to the drill string, the one or more additional components including a drill bit crown; simulating one or more operating conditions incident on the drilling assembly representation, and simulating an interaction between the plurality of components and an earth formation; and predicting physical responses of the drilling assembly representation to the one or more conditions.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: March 12, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Christian Herbig, Hanno Reckmann, Bernhard Meyer-Heye, Frank Schuberth, Jayesh Rameshlal Jain, Jonathan Mackey Hanson, Carmel Zouheir El Hakam, Reed W. Spencer
  • Patent number: 9043152
    Abstract: A method for estimating an inclination and azimuth at a bottom of a borehole includes forming a last survey point including a last inclination and a last azimuth; receiving at a computing device bending moment and at least one of a bending toolface measurement and a near bit inclination measurement from one or more sensors in the borehole; and forming the estimate by comparing possible dogleg severity (DLS) values with the bending moment value.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 26, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Frank Schuberth, Hanno Reckmann, John D. Macpherson, James Albert Hood
  • Patent number: 9000941
    Abstract: A method for estimating a steady state response of a drill string in a borehole includes calculating a first displacement of the drill string in a frequency domain for a first excitation force frequency and a number of multiples of this frequency using an equation of motion of the drill string. The equation of motion has a static force component, an excitation force component, and a non-linear force component with respect to at least one of a deflection and a derivative of the deflection of the drill string. The method further includes: transforming the first displacement from the frequency domain into a time domain; calculating a non-linear force in the time domain; calculating a frequency domain coefficient derived from the calculated non-linear force in the time domain; and calculating a second displacement of the drill string in the frequency domain using the equation of motion and the frequency domain coefficient.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: April 7, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Andreas Hohl, Frank Schuberth, Hanno Reckmann
  • Publication number: 20140232548
    Abstract: A method for estimating a steady state response of a drill string in a borehole includes calculating a first displacement of the drill string in a frequency domain for a first excitation force frequency and a number of multiples of this frequency using an equation of motion of the drill string. The equation of motion has a static force component, an excitation force component, and a non-linear force component with respect to at least one of a deflection and a derivative of the deflection of the drill string. The method further includes: transforming the first displacement from the frequency domain into a time domain; calculating a non-linear force in the time domain; calculating a frequency domain coefficient derived from the calculated non-linear force in the time domain; and calculating a second displacement of the drill string in the frequency domain using the equation of motion and the frequency domain coefficient.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Applicant: Baker Hughes Incorporated
    Inventors: Andreas Hohl, Frank Schuberth, Hanno Reckmann
  • Publication number: 20130076526
    Abstract: A system for estimating downhole parameters includes: at least one parameter sensor disposed along a downhole component and configured to measure a parameter of one or more of a borehole and an earth formation and generate parameter data; and a processor in operable communication with the at least one parameter sensor, the processor configured to receive the parameter data and deformation data relating to deformation of the downhole component. The processor is configured to: generate a mathematical model of the downhole component deformation in real time based on pre-selected geometrical data representing the downhole component and the received deformation data; estimate, in real time, an alignment of the at least one parameter sensor relative to at least one of another parameter sensor and a desired alignment; and in response to estimating a misalignment of the at least one parameter sensor, correct the parameter data based on the misalignment.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Frank Schuberth, Andreas Hartmann, Hans-Martin Maurer, Hanno Reckmann
  • Publication number: 20130054203
    Abstract: A method of predicting behavior of a drilling assembly includes: generating a mathematical representation of a geometry of each of a plurality of components of a drilling assembly, the plurality of components including a plurality of cutters and one or more additional components configured to at least one of: support the plurality of cutters and operably connect the plurality of cutters to the drill string, the one or more additional components including a drill bit crown; simulating one or more operating conditions incident on the drilling assembly representation, and simulating an interaction between the plurality of components and an earth formation; and predicting physical responses of the drilling assembly representation to the one or more conditions.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Christian Herbig, Hanno Reckmann, Bernhard Meyer-Heye, Frank Schuberth, Jayesh Rameshlal Jain, Jonathan Mackey Hanson, Carmel Zouheir El Hakam, Reed W. Spencer
  • Publication number: 20130041586
    Abstract: A method for estimating an inclination and azimuth at a bottom of a borehole includes forming a last survey point including a last inclination and a last azimuth; receiving at a computing device bending moment and at least one of a bending toolface measurement and a near bit inclination measurement from one or more sensors in the borehole; and forming the estimate by comparing possible dogleg severity (DLS) values with the bending moment value.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Frank Schuberth, Hanno Reckmann, John D. Macpherson, James Albert Hood
  • Patent number: 8286729
    Abstract: A method for determining wellbore trajectory includes determining survey parameters in the wellbore; measuring force parameter(s) in the wellbore; and correcting the survey parameters using the measured force parameter(s). The downhole measured force parameters may include forces associated with an operation of a steering device such as an internal reaction force, and/or a bending moment. In variants, the method may include measuring a wellbore temperature; measuring a wellbore parameter in addition to the temperature; and correcting a survey parameter using the measured parameter and the measured temperature. These methods may include correcting survey parameters using measured wellbore diameters. Also, a processor in the wellbore may be programmed to perform the correction while in the wellbore and/or control a steering device using measurements provided by a sensor for measuring internal reaction forces.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: October 16, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Hanno Reckmann, Frank Schuberth, Bernd Santelmann
  • Publication number: 20090205867
    Abstract: A method for determining wellbore trajectory includes determining survey parameters in the wellbore; measuring force parameter(s) in the wellbore; and correcting the survey parameters using the measured force parameter(s). The downhole measured force parameters may include forces associated with an operation of a steering device such as an internal reaction force, and/or a bending moment. In variants, the method may include measuring a wellbore temperature; measuring a wellbore parameter in addition to the temperature; and correcting a survey parameter using the measured parameter and the measured temperature. These methods may include correcting survey parameters using measured wellbore diameters. Also, a processor in the wellbore may be programmed to perform the correction while in the wellbore and/or control a steering device using measurements provided by a sensor for measuring internal reaction forces.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 20, 2009
    Applicant: Baker Hughes Incorporated
    Inventors: Hanno Reckmann, Frank Schuberth, Bernd Santelmann