Patents by Inventor Frank T. John

Frank T. John has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4583365
    Abstract: A new electrothermal fluid motor connected to an electrically controlled energy source for uniformly heating a unique reticulated heat exchanger, which together with an expansion fluid fills a chamber, having a mechanical energy output consisting of a jet flow or a change of force, pressure, or motion, has achieved elimination of internal convection and consequent start-up wall losses found in prior art devices, resulting in improved efficiency and response-time reduction. Typically, the heat exchanger has millions of heating elements, interconnected in a network of distorted dodecahedron cells, each with thirty shared heating elements of triangular cross-section, giving a shock resistance of thousands of g's and thousands of degrees centigrade, a void space of about 97%, and an average thermal diffusion distance of about 100 microns. The preferred energy source is electrical resistance heating, but induction, electrostatic, or radiation-absorption heating may be used.
    Type: Grant
    Filed: December 6, 1983
    Date of Patent: April 22, 1986
    Assignee: Georgina C. Hirtle
    Inventor: Frank T. John
  • Patent number: 4419650
    Abstract: It has been discovered that electrically conducting, vitreous pyrolytic carbon in broken-bubble, foam-type, reticulated structures can be used as an extremely fast and efficient electrically operated motor to actuate mechanical devices, such as mercury liquid contact relays, by electrothermally-produced gas expansion. The gas pressure change is produced evenly and almost instantaneously throughout the volume of the reticular motor to move mercury contacts, to open or close a liquid contact relay, thus avoiding the expensive electromagnetic coils now used as relay motors.By passing an electrical current through conducting reticulated material formed from pyrolytic carbon, metals, conductive ceramics or plastics, the microscopic network of interconnecting filaments is heated, thus heating and expanding the fluid (air, hydrogen, helium, argon, etc.) contained in the reticular motor.
    Type: Grant
    Filed: August 23, 1979
    Date of Patent: December 6, 1983
    Assignee: Georgina Chrystall Hirtle
    Inventor: Frank T. John
  • Patent number: 4296399
    Abstract: A microminiature palladium oxide gas detector and its method of manufacture. The detector comprises an extremely small coil of extremely fine wire such as platinum which is retained, sealed and insulated with an amorphous ceramic binder. The detector further comprises a catalyst applied to its exterior surface. The detector is manufactured by winding the wire about a mandrel which is desirably molybdenum. The coil is then coated with the binder composition which preferably comprises reduced chromic and phosphoric acids. The binder is then cured to retain the coil and the mandrel is removed by etching or oxidation. The catalyst is then applied which is preferably palladium nitrate in a weakly acidic hydrolyzed solution which has been adjusted to a pH of about 3 with tertiary octyl amine. The catalyst is then dehydrated and calcined desirably using an automatic electronic pulse controlled machine to precisely adjust and control processing temperatures and times.
    Type: Grant
    Filed: August 6, 1979
    Date of Patent: October 20, 1981
    Assignee: A-T-O Inc.
    Inventor: Frank T. John
  • Patent number: 4193964
    Abstract: A microminiature palladium oxide gas detector and its method of manufacture. The detector comprises an extremely small coil of extremely fine wire such as platinum which is retained, sealed and insulated with an amorphous ceramic binder. The detector further comprises a catalyst applied to its exterior surface. The detector is manufactured by winding the wire about a mandrel which is desirably molybdenum. The coil is then coated with the binder composition which preferably comprises reduced chromic and phosphoric acids. The binder is then cured to retain the coil and the mandrel is removed by etching or oxidation. The catalyst is then applied which is preferably palladium nitrate in a weakly acidic hydrolyzed solution which has been adjusted to a pH of about 3 with tertiary octyl amine. The catalyst is then dehydrated and calcined desirably using an automatic electronic pulse controlled machine to precisely adjust and control processing temperatures and times.
    Type: Grant
    Filed: December 21, 1977
    Date of Patent: March 18, 1980
    Assignee: A-T-O Inc.
    Inventor: Frank T. John