Patents by Inventor Frank TULLY

Frank TULLY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081197
    Abstract: A robotic fruit picking system includes an autonomous robot that includes a positioning subsystem that enables autonomous positioning of the robot using a computer vision guidance system. The robot also includes at least one picking arm and at least one picking head, or other type of end effector, mounted on each picking arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch. A computer vision subsystem analyses images of the fruit to be picked or stored and a control subsystem is programmed with or learns picking strategies using machine learning techniques. A quality control (QC) subsystem monitors the quality of fruit and grades that fruit according to size and/or quality. The robot has a storage subsystem for storing fruit in containers for storage or transportation, or in punnets for retail.
    Type: Application
    Filed: February 27, 2023
    Publication date: March 14, 2024
    Inventors: Duncan ROBERTSON, Matthew COOK, Edward HERBERT, Frank TULLY
  • Publication number: 20210000013
    Abstract: A robotic fruit picking system includes an autonomous robot that includes a positioning subsystem that enables autonomous positioning of the robot using a computer vision guidance system. The robot also includes at least one picking arm and at least one picking head, or other type of end effector, mounted on each picking arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch. A computer vision subsystem analyses images of the fruit to be picked or stored and a control subsystem is programmed with or learns picking strategies using machine learning techniques. A quality control (QC) subsystem monitors the quality of fruit and grades that fruit according to size and/or quality. The robot has a storage subsystem for storing fruit in containers for storage or transportation, or in punnets for retail.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Duncan ROBERTSON, Matthew COOK, Edward HERBERT, Frank TULLY
  • Patent number: 10779472
    Abstract: A robotic fruit picking system includes an autonomous robot that includes a positioning subsystem that enables autonomous positioning of the robot using a computer vision guidance system. The robot also includes at least one picking arm and at least one picking head, or other type of end effector, mounted on each picking arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch. A computer vision subsystem analyses images of the fruit to be picked or stored and a control subsystem is programmed with or learns picking strategies using machine learning techniques. A quality control (QC) subsystem monitors the quality of fruit and grades that fruit according to size and/or quality. The robot has a storage subsystem for storing fruit in containers for storage or transportation, or in punnets for retail.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: September 22, 2020
    Assignee: DOGTOOTH TECHNOLOGIES LIMITED
    Inventors: Duncan Robertson, Matthew Cook, Edward Herbert, Frank Tully
  • Patent number: 10757861
    Abstract: A robotic fruit picking system includes an autonomous robot that includes a positioning subsystem that enables autonomous positioning of the robot using a computer vision guidance system. The robot also includes at least one picking arm and at least one picking head, or other type of end effector, mounted on each picking arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch. A computer vision subsystem analyses images of the fruit to be picked or stored and a control subsystem is programmed with or learns picking strategies using machine learning techniques. A quality control (QC) subsystem monitors the quality of fruit and grades that fruit according to size and/or quality. The robot has a storage subsystem for storing fruit in containers for storage or transportation, or in punnets for retail.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: September 1, 2020
    Assignee: DOGTOOTH TECHNOLOGIES LIMITED
    Inventors: Duncan Robertson, Matthew Cook, Edward Herbert, Frank Tully
  • Publication number: 20190261566
    Abstract: A robotic fruit picking system includes an autonomous robot that includes a positioning subsystem that enables autonomous positioning of the robot using a computer vision guidance system. The robot also includes at least one picking arm and at least one picking head, or other type of end effector, mounted on each picking arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch. A computer vision subsystem analyses images of the fruit to be picked or stored and a control subsystem is programmed with or learns picking strategies using machine learning techniques. A quality control (QC) subsystem monitors the quality of fruit and grades that fruit according to size and/or quality. The robot has a storage subsystem for storing fruit in containers for storage or transportation, or in punnets for retail.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Duncan ROBERTSON, Matthew COOK, Edward HERBERT, Frank TULLY
  • Publication number: 20190261565
    Abstract: A robotic fruit picking system includes an autonomous robot that includes a positioning subsystem that enables autonomous positioning of the robot using a computer vision guidance system. The robot also includes at least one picking arm and at least one picking head, or other type of end effector, mounted on each picking arm to either cut a stem or branch for a specific fruit or bunch of fruits or pluck that fruit or bunch. A computer vision subsystem analyses images of the fruit to be picked or stored and a control subsystem is programmed with or learns picking strategies using machine learning techniques. A quality control (QC) subsystem monitors the quality of fruit and grades that fruit according to size and/or quality. The robot has a storage subsystem for storing fruit in containers for storage or transportation, or in punnets for retail.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Duncan ROBERTSON, Matthew COOK, Edward HERBERT, Frank TULLY