Patents by Inventor Frank W. Hawley

Frank W. Hawley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170179382
    Abstract: A resistive random access memory device is formed in an integrated circuit between a first metal layer and a second metal layer and includes a first barrier layer disposed over the first metal layer, a tunneling dielectric layer disposed over the first barrier layer, a solid electrolyte layer disposed over the tunneling dielectric layer, an ion source layer disposed over the solid electrolyte layer, and a second barrier layer disposed over the ion source layer.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 22, 2017
    Applicant: Microsemi SoC Corporation
    Inventors: John L. McCollum, Fethi Dhaoui, Frank W. Hawley
  • Patent number: 8723151
    Abstract: A resistive random access memory cell formed in an integrated circuit includes a first resistive random access memory device including an anode and a cathode, a second resistive random access memory device including an anode and a cathode, the cathode of the second resistive random access memory device connected to the anode of the first resistive random access memory device, a programming transistor having a first source/drain terminal connected to a programming potential node, a second source/drain terminal connected to the anode of the first resistive random access memory device and the cathode of the second resistive random access memory device, and a gate connected to a program-enable nod, and at least one switch transistor having a gate connected to the anode of the first resistive random access memory device and the cathode of the second resistive random access memory device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 13, 2014
    Assignee: Microsemi SoC Corporation
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Publication number: 20130221316
    Abstract: A resistive random access memory device formed on a semiconductor substrate comprises an interlayer dielectric having a via formed therethrough. A chemical-mechanical-polishing stop layer is formed over the interlayer dielectric. A barrier metal liner lines walls of the via. A conductive plug is formed in the via. A first barrier metal layer is formed over the chemical-mechanical-polishing stop layer and in electrical contact with the conductive plug. A dielectric layer is formed over the first barrier metal layer. An ion source layer is formed over the dielectric layer. A dielectric barrier layer is formed over the ion source layer, and includes a via formed therethrough communicating with the ion source layer. A second barrier metal layer is formed over the dielectric barrier layer and in electrical contact with the ion source layer. A metal interconnect layer is formed over the barrier metal layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 29, 2013
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Patent number: 8415650
    Abstract: A resistive random access memory cell is formed on a semiconductor substrate. First and second diffused regions are disposed in the semiconductor substrate. A polysilicon gate is disposed above the first and second diffused regions. A first contact connects the first diffused region with a region of a first metal layer. A first interlayer dielectric layer is formed over the first metal layer and includes first and second vias, each including conductive plugs connected to the region of the first metal layer. First and second resistive random access memory devices formed over the first interlayer dielectric layer have first and second terminals, and include a dielectric layer and an ion source layer. The first terminals of the first and second resistive random access memory devices are coupled to the first metal layer by the first and second conductive plugs.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 9, 2013
    Assignee: Actel Corporation
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Patent number: 8269204
    Abstract: A resistive random access memory device formed on a semiconductor substrate comprises an interlayer dielectric having a via formed therethrough. A chemical-mechanical-polishing stop layer is formed over the interlayer dielectric. A barrier metal liner lines walls of the via. A conductive plug is formed in the via. A first barrier metal layer is formed over the chemical-mechanical-polishing stop layer and in electrical contact with the conductive plug. A dielectric layer is formed over the first barrier metal layer. An ion source layer is formed over the dielectric layer. A dielectric barrier layer is formed over the ion source layer, and includes a via formed therethrough communicating with the ion source layer. A second barrier metal layer is formed over the dielectric barrier layer and in electrical contact with the ion source layer. A metal interconnect layer is formed over the barrier metal layer.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 18, 2012
    Assignee: Actel Corporation
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Patent number: 8269203
    Abstract: A resistive random access memory device formed on a semiconductor substrate comprises an interlayer dielectric having a via formed therethrough. A chemical-mechanical-polishing stop layer is formed over the interlayer dielectric. A barrier metal liner lines walls of the via. A conductive plug is formed in the via. A first barrier metal layer is formed over the chemical-mechanical-polishing stop layer and in electrical contact with the conductive plug. A dielectric layer is formed over the first barrier metal layer. An ion source layer is formed over the dielectric layer. A dielectric barrier layer is formed over the ion source layer, and includes a via formed therethrough communicating with the ion source layer. A second barrier metal layer is formed over the dielectric barrier layer and in electrical contact with the ion source layer. A metal interconnect layer is formed over the barrier metal layer.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 18, 2012
    Assignee: Actel Corporation
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Publication number: 20110001115
    Abstract: A resistive random access memory device formed on a semiconductor substrate comprises an interlayer dielectric having a via formed therethrough. A chemical-mechanical-polishing stop layer is formed over the interlayer dielectric. A barrier metal liner lines walls of the via. A conductive plug is formed in the via. A first barrier metal layer is formed over the chemical-mechanical-polishing stop layer and in electrical contact with the conductive plug. A dielectric layer is formed over the first barrier metal layer. An ion source layer is formed over the dielectric layer. A dielectric barrier layer is formed over the ion source layer, and includes a via formed therethrough communicating with the ion source layer. A second barrier metal layer is formed over the dielectric barrier layer and in electrical contact with the ion source layer. A metal interconnect layer is formed over the barrier metal layer.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Publication number: 20110001116
    Abstract: A resistive random access memory device formed on a semiconductor substrate comprises an interlayer dielectric having a via formed therethrough. A chemical-mechanical-polishing stop layer is formed over the interlayer dielectric. A barrier metal liner lines walls of the via. A conductive plug is formed in the via. A first barrier metal layer is formed over the chemical-mechanical-polishing stop layer and in electrical contact with the conductive plug. A dielectric layer is formed over the first barrier metal layer. An ion source layer is formed over the dielectric layer. A dielectric barrier layer is formed over the ion source layer, and includes a via formed therethrough communicating with the ion source layer. A second barrier metal layer is formed over the dielectric barrier layer and in electrical contact with the ion source layer. A metal interconnect layer is formed over the barrier metal layer.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Publication number: 20110001108
    Abstract: A resistive random access memory device formed on a semiconductor substrate comprises an interlayer dielectric having a via formed therethrough. A chemical-mechanical-polishing stop layer is formed over the interlayer dielectric. A barrier metal liner lines walls of the via. A conductive plug is formed in the via. A first barrier metal layer is formed over the chemical-mechanical-polishing stop layer and in electrical contact with the conductive plug. A dielectric layer is formed over the first barrier metal layer. An ion source layer is formed over the dielectric layer. A dielectric barrier layer is formed over the ion source layer, and includes a via formed therethrough communicating with the ion source layer. A second barrier metal layer is formed over the dielectric barrier layer and in electrical contact with the ion source layer. A metal interconnect layer is formed over the barrier metal layer.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Inventors: Jonathan Greene, Frank W. Hawley, John McCollum
  • Publication number: 20080197450
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1±0.4, and the ratio of x to y in SixNy is in a range of about 0.75±0.225.
    Type: Application
    Filed: April 15, 2008
    Publication date: August 21, 2008
    Applicants: ACTEL CORPORATION, TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Patent number: 7358589
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1+/?0.4, and the ratio of x to y in SixNy is in a range of about 0.75+/?0.225.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: April 15, 2008
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Patent number: 6965156
    Abstract: A metal-to-metal antifuse having a lower metal electrode, a lower thin adhesion promoting layer disposed over the lower metal electrode, an amorphous carbon antifuse material layer disposed over the thin adhesion promoting layer, an upper thin adhesion promoting layer disposed over said antifuse material layer, and an upper metal electrode. The thin adhesion promoting layers are about 2 angstroms to 20 angstroms in thickness, and are from a material selected from the group comprising SixCy and SixNy. The ratio of x to y in SixCy is in a range of about 1+/?0.4, and the ratio of x to y in SixNy is in a range of about 0.75+/?0.225.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: November 15, 2005
    Assignees: Actel Corporation, Texas Tech University System
    Inventors: Frank W. Hawley, A. Farid Issaq, John L. McCollum, Shubhra M. Gangopadhyay, Jorge A. Lubguban, Jin Miao Shen
  • Publication number: 20030205723
    Abstract: A metal-to-metal antifuse is disposed between two metal interconnect layers in an integrated circuit. An insulating layer is disposed above a lower metal interconnect layer. The insulating layer includes a via formed therethrough containing a tungsten plug in electrical contact with the lower metal interconnect layer. The tungsten plug forms a lower electrode of the antifuse. The upper surface of the tungsten plug is planarized with the upper surface of the insulating layer. In a first embodiment, an antifuse material layer comprising amorphous carbon, amorphous carbon doped with hydrogen or fluorine, or amorphous silicon carbide is disposed above the upper surface of the tungsten plug. A layer of a barrier metal disposed over the antifuse material layer forms an upper electrode of the antifuse. An oxide or tungsten hard mask provides high etch selectivity and the possibility to etch barrier metals without affecting the dielectric constant value and mechanical properties of the antifuse material.
    Type: Application
    Filed: April 1, 2003
    Publication date: November 6, 2003
    Inventors: Frank W. Hawley, John L. McCollum, Jeewika C. Ranaweera
  • Publication number: 20030062596
    Abstract: A metal-to-metal antifuse is disposed between two metal interconnect layers in an integrated circuit. An insulating layer is disposed above a lower metal interconnect layer. The insulating layer includes a via formed therethrough containing a tungsten plug in electrical contact with the lower metal interconnect layer. The tungsten plug forms a lower electrode of the antifuse. The upper surface of the tungsten plug is planarized with the upper surface of the insulating layer. In a first embodiment, an antifuse material layer comprising amorphous carbon, amorphous carbon doped with hydrogen or fluorine, or amorphous silicon carbide is disposed above the upper surface of the tungsten plug. A layer of a barrier metal disposed over the antifuse material layer forms an upper electrode of the antifuse. An oxide or tungsten hard mask provides high etch selectivity and the possibility to etch barrier metals without affecting the dielectric constant value and mechanical properties of the antifuse material.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 3, 2003
    Applicant: Actel Corporation
    Inventors: Frank W. Hawley, John L. McCollum, Jeewika C. Ranaweera
  • Patent number: 6437365
    Abstract: An antifuse comprises a lower electrode formed from a metal layer in a microcircuit. A interlayer dielectric layer is disposed over the lower electrode and has an aperture formed therein. A conductive plug, formed from a material such as tungsten, is formed in the aperture. The upper surface of the interlayer dielectric is etched back to create a raised portion of the plug. The upper edges of the plug are rounded. An antifuse layer, preferably comprising a silicon nitride, amorphous silicon, silicon nitride sandwich incorporating a thin silicon dioxide layer above or below the amorphous silicon layer or such a sandwich structure covered by a titanium nitride layer, is disposed above the plug. An upper electrode, preferably comprising a metal layer is disposed over the antifuse layer.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: August 20, 2002
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, John L. McCollum, Ying Go, Abdelshafy Eltoukhy
  • Patent number: 6124193
    Abstract: An antifuse comprises a lower electrode formed from a metal layer in a microcircuit. A interlayer dielectric layer is disposed over the lower electrode and has an aperture formed therein. A conductive plug, formed from a material such as tungsten, is formed in the aperture. The upper surface of the interlayer dielectric is etched back to create a raised portion of the plug. The upper edges of the plug are rounded. An antifuse layer, preferably comprising a silicon nitride, amorphous silicon, silicon nitride sandwich incorporating a thin silicon dioxide layer above or below the amorphous silicon layer or such a sandwich structure covered by a titanium nitride layer, is disposed above the plug. An upper electrode, preferably comprising a metal layer is disposed over the antifuse layer.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: September 26, 2000
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, John L. McCollum, Ying Go, Abdelshafy Eltoukhy
  • Patent number: 5986322
    Abstract: An antifuse comprises an antifuse material disposed between a lower conductive electrode and an upper conductive electrode. The antifuse material comprises a layer of amorphous silicon disposed between two layers of silicon nitride. A thin layer of silicon dioxide is disposed between the layer of amorphous silicon and one of the silicon nitride layers.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: November 16, 1999
    Inventors: John L. McCollum, Frank W. Hawley
  • Patent number: 5962910
    Abstract: A metal-to-metal antifuse disposed between two aluminum metallization layers in a CMOS integrated circuit or similar structure includes an antifuse material layer having a substantially aluminum-free conductive link. The substantially aluminum-free link is formed by forming a first barrier metal layer out of TiN having a first thickness, a second barrier metal layer out of TiN having a second thickness which may be less than said first thickness, the first and second barrier metal layers separating the antifuse material layer from first and second electrodes. The antifuse is programmed by applying a voltage potential capable of programming the antifuse across the electrodes with the more positive side of the potential applied to the electrode adjacent the barrier metal layer having the least thickness.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: October 5, 1999
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, Abdelshafy A. Eltoukhy, John L. McCollum
  • Patent number: 5920109
    Abstract: An antifuse comprises a lower electrode formed from a metal layer in a microcircuit. A interlayer dielectric layer is disposed over the lower electrode and has an aperture formed therein. A conductive plug, formed from a material such as tungsten, is formed in the aperture. The upper surface of the interlayer dielectric is etched back to create a raised portion of the plug. The upper edges of the plug are rounded. An antifuse layer, preferably comprising a silicon nitride, amorphous silicon, silicon nitride sandwich incorporating a thin silicon dioxide layer above or below the amorphous silicon layer or such a sandwich structure covered by a titanium nitride layer, is disposed above the plug. An upper electrode, preferably comprising a metal layer is disposed over the antifuse layer.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: July 6, 1999
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, John L. McCollum, Ying Go, Abdelshafy Eltoukhy
  • Patent number: 5804500
    Abstract: An antifuse comprises a lower electrode formed from a metal layer in a microcircuit. A interlayer dielectric layer is disposed over the lower electrode and has an aperture formed therein. A conductive plug, formed from a material such as tungsten, is formed in the aperture. The upper surface of the interlayer dielectric is etched back to create a raised portion of the plug. The upper edges of the plug are rounded. An antifuse layer, preferably comprising a silicon nitride, amorphous silicon, silicon nitride sandwich incorporating a thin silicon dioxide layer above or below the amorphous silicon layer or such a sandwich structure covered by a titanium nitride layer, is disposed above the plug. An upper electrode, preferably comprising a metal layer is disposed over the antifuse layer.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: September 8, 1998
    Assignee: Actel Corporation
    Inventors: Frank W. Hawley, John L. McCollum, Ying Go, Abdelshafy Eltoukhy