Patents by Inventor Frank Zhong

Frank Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240158836
    Abstract: The technology provided herein relates to high resolution multiplex methods and kits for detecting different analytes in a sample in parallel by sequential signal-encoding of said analytes, wherein the method allows a differentiation of targets which distance is below the diffraction limit of optical microscopes, that is, targets with spatial optical overlap. The disclosed methods also include in vitro methods for screening, identifying and/or testing a substance and/or drug and in vitro methods for diagnosis of a disease, and an optical multiplexing system.
    Type: Application
    Filed: June 29, 2023
    Publication date: May 16, 2024
    Applicant: Resolve Biosciences GmbH
    Inventors: Cheng Frank ZHONG, Christian Korfhage, Frank Reinecke, Stephan Tirier
  • Patent number: 11980885
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: May 14, 2024
    Assignee: MGI Holdings Co., Limited
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Patent number: 11974592
    Abstract: Provided herein are compositions with enhanced protein content, proteins with high solubility, protein combinations and methods for the preparation thereof.
    Type: Grant
    Filed: September 22, 2023
    Date of Patent: May 7, 2024
    Assignee: CLARA FOODS CO.
    Inventors: Kritika Mahadevan, Joel Andrew Kreps, Isha Joshi, Farnoosh Ayoughi, Weixi Zhong, Harshal Kshirsagar, Alexandre Chapeaux, Wesley Rutherford-Jenkins, Ranjan Patnaik, Frank Douglas Ivey
  • Publication number: 20240130413
    Abstract: Provided herein are compositions with enhanced protein content, proteins with high solubility, protein combinations and methods for the preparation thereof.
    Type: Application
    Filed: September 22, 2023
    Publication date: April 25, 2024
    Applicant: Clara Foods Co.
    Inventors: Kritika MAHADEVAN, Joel Andrew KREPS, Isha JOSHI, Farnoosh AYOUGHI, Weixi ZHONG, Harshal KSHIRSAGAR, Alexandre CHAPEAUX, Wesley RUTHERFORD-JENKINS, Ranjan PATNAIK, Frank Douglas IVEY
  • Publication number: 20240119364
    Abstract: The present disclosure relates to systems, non-transitory computer-readable media, and methods for automatically generating and executing machine learning pipelines based on a variety of user selections of various settings, machine learning structures, and other machine learning pipeline criteria. In particular, in one or more embodiments, the disclosed systems utilize user input selecting various machine learning pipeline settings to generate machine learning model pipeline files. Further, the disclosed systems execute and deploy the machine learning pipelines based on user-selected schedules. In some embodiments, the disclosed systems also register the machine learning pipelines and associated machine learning pipeline data in a machine learning pipeline registry. Further, the disclosed systems can generate and provide a machine learning pipeline graphical user interface for monitoring and managing machine learning pipelines.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 11, 2024
    Inventors: Akshay Jain, Frank Teoh, Peeyush Agarwal, Michael Tompkins, Sashidhar Guntury, Yunfan Zhong, Greg Tobkin
  • Patent number: 11932802
    Abstract: Various shaped abrasive particles are disclosed. Each shaped abrasive particle includes a body having at least one major surface and a side surface extending from the major surface.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 19, 2024
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Todd M. Cotter, Francois Wagner, Rene G. Demers, Richard J. Klok, Alexandra Marazano, Adam D. Lior, James A. Salvatore, Sujatha K. Iyengar, David F Louapre, Sidath S. Wijesooriya, Ronald Christopher Motta, Gary A. Guertin, Michael D. Kavanaugh, Doruk O. Yener, Jennifer H. Czerepinski, Jun Jia, Frederic Josseaux, Ralph Bauer, Frank J. Csillag, Yang Zhong, James P. Stewart, Mark P. Dombrowski, Sandhya Jayaraman Rukmani, Amandine Martin, Stephen E. Fox, Nilanjan Sarangi, Dean S. Matsumoto
  • Publication number: 20240076733
    Abstract: This invention provides devices for use in various analytical applications including single-molecule analytical reactions. Methods for detecting analytes optically by propagating optical energy by waveguides within a substrate are provided. Analytical devices are provided which have both shallow and deep waveguides in which illumination light is transported through the deep waveguides and coupled into the shallow waveguides. The shallow waveguides provide evanescent field illumination to analytes, such as single-molecule analytes, within nanometer scale wells. Integrated devices including integrated detectors such as CMOS detectors are included.
    Type: Application
    Filed: December 21, 2022
    Publication date: March 7, 2024
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20240066522
    Abstract: An apparatus for forming a plurality of microdroplets from a droplet includes a substrate, a dielectric layer on the substrate and having a plurality of hydrophilic surface regions spaced apart from each other by a hydrophobic surface, and a plurality of electrodes covered by the dielectric layer. The electrodes are configured to form an electric field across the droplet in response to voltages provided by a control circuit to move the droplet across the dielectric layer in a lateral direction while leaving portions of the droplet on the hydrophilic surface regions to form the plurality of microdroplets on the hydrophilic surface regions.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Jian Gong, Liang Wang, Yan-You Lin, Cheng Frank Zhong
  • Publication number: 20240060890
    Abstract: An integrated detection, flow cell and photonics (DFP) device is provided that comprises a substrate having an array of pixel elements that sense photons during active periods. The substrate and pixel elements form an IC photon detection layer. At least one wave guide is formed on the IC photo detection layer as a photonics layer. An optical isolation layer is formed over at least a portion of the wave guide. A collection of photo resist (PR) walls patterned to define at least one flow cell channel that is configured to direct fluid along a fluid flow path. The wave guides align to extend along the fluid flow path. The flow cell channel is configured to receive samples at sample sites that align with the array of pixel elements.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Inventors: Hod Finkelstein, Cheng Frank Zhong, Eliane H. Trepagnier
  • Patent number: 11865543
    Abstract: An apparatus for forming a plurality of microdroplets from a droplet includes a substrate, a dielectric layer on the substrate and having a plurality of hydrophilic surface regions spaced apart from each other by a hydrophobic surface, and a plurality of electrodes covered by the dielectric layer. The electrodes are configured to form an electric field across the droplet in response to voltages provided by a control circuit to move the droplet across the dielectric layer in a lateral direction while leaving portions of the droplet on the hydrophilic surface regions to form the plurality of microdroplets on the hydrophilic surface regions.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 9, 2024
    Assignee: MGI Tech Co., Ltd.
    Inventors: Jian Gong, Liang Wang, Yan-You Lin, Cheng Frank Zhong
  • Patent number: 11841322
    Abstract: An integrated detection, flow cell and photonics (DFP) device is provided that comprises a substrate having an array of pixel elements that sense photons during active periods. The substrate and pixel elements form an IC photon detection layer. At least one wave guide is formed on the IC photo detection layer as a photonics layer. An optical isolation layer is formed over at least a portion of the wave guide. A collection of photo resist (PR) walls patterned to define at least one flow cell channel that is configured to direct fluid along a fluid flow path. The wave guides align to extend along the fluid flow path. The flow cell channel is configured to receive samples at sample sites that align with the array of pixel elements.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: December 12, 2023
    Assignee: Illumina, Inc.
    Inventors: Hod Finkelstein, Cheng Frank Zhong, Eliane H. Trepagnier
  • Publication number: 20230358678
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. A passivation layer extends over the device base and forms an array of reaction recesses above the light guides. The biosensor also includes peripheral crosstalk shields that at least partially surround corresponding light guides of the guide array to reduce optical crosstalk between adjacent light sensors.
    Type: Application
    Filed: June 21, 2023
    Publication date: November 9, 2023
    Inventors: Cheng Frank Zhong, Hod Finkeslstien, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Publication number: 20230249186
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Patent number: 11719637
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. A passivation layer extends over the device base and forms an array of reaction recesses above the light guides. The biosensor also includes peripheral crosstalk shields that at least partially surround corresponding light guides of the guide array to reduce optical crosstalk between adjacent light sensors.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: August 8, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Publication number: 20230213686
    Abstract: A device for luminescent imaging includes an array of imaging pixels, a photonic structure over the array of imaging pixels, and an array of features over the photonic structure. A first feature of the array of features is over a first pixel of the array of imaging pixels, and a second feature of the array of features is over the first pixel and spatially displaced from the first feature. A first luminophore is within or over the first feature, and a second luminophore is within or over the second feature. The device includes a radiation source to generate first photons having a first characteristic at a first time, and generate second photons having a second characteristic at a second time. The first pixel selectively receives luminescence emitted by the first and second luminophores responsive to the first photons at the first time and second photons at the second time, respectively.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 6, 2023
    Applicant: Illumina, Inc.
    Inventors: Juraj Topolancik, Cheng Frank Zhong
  • Patent number: 11660602
    Abstract: A microfluidic device includes first and second substrate structures. The first substrate structure has a first substrate surface configured to receive one or more droplets. A plurality of electrodes configured to apply an electric field to the droplets. The second substrate structure has a second substrate surface facing the first substrate surface and spaced apart from the first substrate surface to form a fluid channel. The microfluidic device has a first heating element adjacent to the first substrate structure and disposed on an opposite side of the first substrate surface, and a second heating element adjacent to the second substrate structure and disposed on an opposite side of the second substrate surface. The microfluidic device further includes one or more temperature sensors disposed adjacent to the fluid channel between the first substrate structure and the second substrate structure.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: May 30, 2023
    Assignee: MGI Holdings Co., Limited
    Inventors: Yan-You Lin, Jian Gong, Frank Zhong
  • Patent number: 11579336
    Abstract: A device for luminescent imaging includes an array of imaging pixels, a photonic structure over the array of imaging pixels, and an array of features over the photonic structure. A first feature of the array of features is over a first pixel of the array of imaging pixels, and a second feature of the array of features is over the first pixel and spatially displaced from the first feature. A first luminophore is within or over the first feature, and a second luminophore is within or over the second feature. The device includes a radiation source to generate first photons having a first characteristic at a first time, and generate second photons having a second characteristic at a second time. The first pixel selectively receives luminescence emitted by the first and second luminophores responsive to the first photons at the first time and second photons at the second time, respectively.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: February 14, 2023
    Assignee: Illumina, Inc.
    Inventors: Juraj Topolancik, Cheng Frank Zhong
  • Patent number: 11560591
    Abstract: This invention provides devices for use in various analytical applications including single-molecule analytical reactions. Methods for detecting analytes optically by propagating optical energy by waveguides within a substrate are provided. Analytical devices are provided which have both shallow and deep waveguides in which illumination light is transported through the deep waveguides and coupled into the shallow waveguides. The shallow waveguides provide evanescent field illumination to analytes, such as single-molecule analytes, within nanometer scale wells. Integrated devices including integrated detectors such as CMOS detectors are included.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: January 24, 2023
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20220301848
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong
  • Patent number: 11387096
    Abstract: A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: July 12, 2022
    Assignee: MGI Tech Co., Ltd.
    Inventors: Shifeng Li, Jian Gong, Yan-You Lin, Cheng Frank Zhong