Patents by Inventor Franklin F. Mittricker

Franklin F. Mittricker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9689309
    Abstract: Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 27, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Russell H. Oelfke, Richard A. Huntington, Sulabh K. Dhanuka, Dennis M. O'Dea, Robert D. Denton, O. Angus Sites, Franklin F. Mittricker
  • Patent number: 9670841
    Abstract: Systems and methods are provided for varying the exhaust gas recycle circuit of low emission gas turbines. In one or more embodiments, the systems and methods incorporate alternatives to the use of a direct contact cooler. In the same or other embodiments, the systems and methods incorporate alternatives intended to reduce or eliminate the erosion or corrosion of compressor blades due to the presence of acidic water droplets in the recycled gas stream.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 6, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Loren K. Starcher, Omar Angus Sites
  • Publication number: 20170138236
    Abstract: A method for capturing emissions from a fuel combustion process comprising: providing a fuel to a combustor on a gas turbine, providing an oxidant to the combustor, combusting the fuel and the oxidant in the combustor to produce an exhaust gas, passing at least a portion of the exhaust gas to one or more catalyst beds. The one or more catalyst beds promote a reaction which consumes CO and produces CO2 and adsorb CO2. Pressure at the catalyst beds is reduced by outputting a blow down stream from the catalyst beds and then CO2 is purged from the one or more catalyst beds with a regenerant stream to create a product stream.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER
  • Publication number: 20170141421
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a molten carbonate fuel cell power generation reaction can be separated by using a swing adsorption process so as to generate a high purity CO2 stream while reducing or minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. A high temperature adsorption reactor adsorbs the CO2 and recovers H2 from an exhaust gas of a first molten carbonate fuel cell at a high temperature and at a low pressure. The reactor passes along the adsorbed CO2 to a cathode and the recovered H2 to an anode of a second molten carbonate fuel cell for further power generation. This can allow for improved energy recovery while also generating high purity streams of CO2 and H2.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER, Loren STARCHER
  • Publication number: 20170138222
    Abstract: Systems and methods are provided for combined cycle power generation and enhanced hydrocarbon production where emission gases during power generation are separated by adsorption and applied to facilitate extraction of hydrocarbons from a reservoir. A power generation plant passes exhaust gas to a first swing adsorption reactor. The first swing adsorption reactor adsorbs the CO2 from the exhaust gas. An adsorption cycle of the first swing adsorption reactor is variable. An injection well injects the CO2 adsorbed by the first swing adsorption reactor in a hydrocarbon reservoir. A production well that is in communication with the injection well produces a mixture of hydrocarbons and CO2. A second swing adsorption reactor purifies the produced hydrocarbons by adsorbing the produced CO2 from the production well. The purified hydrocarbons are fed back to the power generation plant where combustion occurs and power is generated.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER, Loren STARCHER
  • Publication number: 20170136401
    Abstract: Systems and methods for using pressure swing adsorption to separate and/or capture resulting emissions are provided. A stream of recycled exhaust gas is passed into a first swing adsorption reactor comprising a first adsorbent material which adsorbs CO2. An enriched N2 stream is recovered from a forward end of the first swing adsorption reactor. The pressure in the first swing adsorption reactor is reduced. The first swing adsorption reactor is purged with a portion of the first N2 stream recovered from the first swing adsorption reactor. The first purge output is passed to a second swing adsorption reactor comprising a second adsorbent material which adsorbs CO2. A second N2 stream is recovered from the second swing adsorption reactor. The pressure in the second swing adsorption reactor is reduced. The second swing adsorption reactor is purged with a steam purge.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 18, 2017
    Inventors: Narasimhan SUNDARAM, Hans THOMANN, Franklin F. MITTRICKER, Loren STARCHER
  • Patent number: 9599021
    Abstract: Systems, methods, and apparatus are provided for controlling the oxidant feed in low emission turbine systems to maintain stoichiometric or substantially stoichiometric combustion conditions. In one or more embodiments, such control is achieved by diverting a portion of the recirculating exhaust gas and combining it with the oxidant feed to maintain a constant oxygen level in the combined oxidant-exhaust stream fed to the combustion chamber.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 21, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Sulabh K. Dhanuka, Omar Angus Sites
  • Patent number: 9599070
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 21, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20170058737
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and separating the exhaust into rich CO2 and lean CO2 streams. In one or more embodiments, the exhaust is separated at an elevated pressure, such as between a high-pressure expansion stage and a low-pressure expansion stage.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Inventors: Franklin F. Mittricker, Sulabh K. Dhanuka, Richard A. Huntington, Omar Angus Sites, Dennis M. O'Dea, Russell H. Oelfke
  • Patent number: 9581081
    Abstract: A system includes a gas turbine engine that includes a turbine section having one or more turbine stages between an upstream end and a downstream end, an exhaust section disposed downstream from the downstream end of the turbine section, and a fluid supply system coupled to the exhaust section. The fluid supply system is configured to route an inert gas to the exhaust section.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 28, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Pramod K. Biyani, Rajarshi Saha, Anil Kumar Dasoji, Richard A. Huntington, Franklin F. Mittricker
  • Publication number: 20170009652
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Inventors: Narasimhan SUNDARAM, Ramesh GUPTA, Hans THOMANN, Hugo S. CARAM, Loren K. STARCHER, Franklin F. MITTRICKER, Simon C. WESTON, Scott J. WEIGEL
  • Patent number: 9476356
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 25, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Ramesh Gupta, Hans Thomann, Hugo S. Caram, Loren K. Starcher, Franklin F. Mittricker, Simon C. Weston, Scott J. Weigel
  • Patent number: 9463417
    Abstract: Methods and systems for CO2 separation in low emission power plants are provided. One system includes a gas turbine system that combusts a fuel and an oxidant in the presence of a compressed recycle stream to provide mechanical power and a gaseous exhaust. A purge stream is taken from the compressed recycle stream and directed to a CO2 separator configured to absorb CO2 from the purge stream using a potassium carbonate solvent. Volatiles are removed from the rich solvent by stripping or by flashing to an intermediate pressure before the rich solvent is regenerated and CO2 is removed.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 11, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Russell H. Oelkfe, Richard A. Huntington, Franklin F. Mittricker
  • Patent number: 9399950
    Abstract: The present techniques are directed to a combustor for a gas turbine. For example, an embodiment provides a spool piece for the combustor. The spool piece includes an oxidant injection port configured for injection of an oxidant proximate to a flame in the combustor and a recycle-gas extraction port configured for an extraction of a recycle gas from the combustor, wherein the recycle gas is isolated from the oxidant prior to the use of the oxidant in a flame.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 26, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Dennis M. O'Dea
  • Patent number: 9353940
    Abstract: Systems and methods for an oxy-fuel type combustion reaction are provided. In one or more embodiments, a combustion system can include at least two mixing zones, where a first mixing zone at least partially mixes oxygen and carbon dioxide to produce a first mixture and a second mixing zone at least partially mixes the first mixture with a fuel to produce a second mixture. The combustion system can also include a combustion zone configured to combust the second mixture to produce a combustion product. In one or more embodiments, the first mixture can have a spatially varied ratio of oxygen-to-carbon dioxide configured to generate a hot zone in the combustion zone to increase flame stability in the combustion zone.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 31, 2016
    Assignees: ExxonMobil Upstream Research Company, Georgia Tech Research Corporation
    Inventors: Franklin F. Mittricker, Dennis M. O'Dea, Harry W. Deckman, Chad C. Rasmussen, David R. Noble, Jerry M. Seitzman, Timothy C. Lieuwen, Sulabh K. Dhanuka, Richard Huntington
  • Publication number: 20160010493
    Abstract: A system includes plurality of combustors and a distributed flow measurement system coupled to the plurality of combustors. Each combustor of the plurality of combustors includes one or more oxidant passages and one or more fuel passages. The distributed flow measurement system is configured to measure an oxidant flow rate for a respective oxidant passage of the one or more oxidant passages of the respective combustor based at least in part on an oxidant pressure drop along the respective oxidant passage, and the distributed flow measurement system is configured to measure a fuel flow rate for a respective fuel passage of the one or more fuel passages of the respective combustor based at least in part on a fuel pressure drop along the respective fuel passage.
    Type: Application
    Filed: January 19, 2015
    Publication date: January 14, 2016
    Inventors: Dennis M. O'Dea, Karl Dean Minto, Richard A. Huntington, Sulabh K. Dhanuka, Franklin F. Mittricker
  • Publication number: 20150377148
    Abstract: In one embodiment, a system includes at least one sensor configured to communicate a signal representative of blower vane position, wherein the blower vane is disposed in a blower of an exhaust gas recirculation system receiving exhaust from a gas turbine system and recycling the exhaust gas back to the gas turbine system. The system further includes a controller communicatively coupled to the at least one sensor, wherein the controller is configured to execute a control logic to derive a reference value for the blower vane position, and wherein the controller is configured to apply a direct limit, an model-based limit, or a combination thereof, to the reference value to derive a limit-based value, and wherein the controller is configured to position the blower vane based on the limit-based value.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 31, 2015
    Inventors: Karl Dean Minto, Todd Franklin Denman, Franklin F. Mittricker, Richard Alan Huntington
  • Patent number: 9222671
    Abstract: The present invention relates to methods and systems for controlling a combustion reaction and the products thereof. One embodiment includes a combustion control system having an oxygenation stream substantially comprising oxygen and CO2 and having an oxygen to CO2 ratio, then mixing the oxygenation stream with a combustion fuel stream and combusting in a combustor to generate a combustion products stream having a temperature and a composition detected by a temperature sensor and an oxygen analyzer, respectively, the data from which are used to control the flow and composition of the oxygenation and combustion fuel streams. The system may also include a gas turbine with an expander and having a load and a load controller in a feedback arrangement.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 29, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Loren K. Starcher, Chad Rasmussen, Richard A. Huntington, Frank Hershkowitz
  • Publication number: 20150240717
    Abstract: A system and methods for increasing a combustibility of a low BTU natural gas are provided herein. The method includes increasing the adiabatic flame temperature of the low BTU natural gas using heavy hydrocarbons, wherein the heavy hydrocarbons include compounds with a carbon number of at least two. The method also includes burning the low BTU natural gas in a gas turbine.
    Type: Application
    Filed: September 30, 2013
    Publication date: August 27, 2015
    Inventors: Loren K. STARCHER, Franklin F. MITTRICKER, P. Scott NOTHROP, Charles J. MART
  • Patent number: 8984857
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes integrated pressure maintenance and miscible flood systems with low emission power generation. An alternative system provides for low emission power generation, carbon sequestration, enhanced oil recovery (EOR), or carbon dioxide sales using a hot gas expander and external combustor. Another alternative system provides for low emission power generation using a gas power turbine to compress air in the inlet compressor and generate power using hot carbon dioxide laden gas in the expander. Other efficiencies may be gained by incorporating heat cross-exchange, a desalination plant, co-generation, and other features.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: March 24, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Moses Minta, Franklin F. Mittricker, Peter C. Rasmussen, Loren K. Starcher, Chad C. Rasmussen, James T. Wilkins, Richard W. Meidel, Jr.