Patents by Inventor Franklin H. Williams, Jr.

Franklin H. Williams, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140617
    Abstract: Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate focal planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Applicant: Live Earth Imaging Enterprises, L.L.C.
    Inventor: Franklin H. Williams, JR.
  • Patent number: 11496679
    Abstract: Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate local planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: November 8, 2022
    Assignee: Live Earth Imaging Enterprises, L.L.C.
    Inventor: Franklin H. Williams, Jr.
  • Publication number: 20210385377
    Abstract: Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate local planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds.
    Type: Application
    Filed: February 8, 2021
    Publication date: December 9, 2021
    Applicant: Live Earth Imaging Enterprises, L.L.C.
    Inventor: Franklin H. Williams, JR.
  • Publication number: 20210148705
    Abstract: Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate focal planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds, or more often.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 20, 2021
    Inventor: Franklin H. Williams, JR.
  • Patent number: 10531052
    Abstract: Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate focal planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds, or more often.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 7, 2020
    Assignee: Live Earth Imaging Enterprises, L.L.C.
    Inventor: Franklin H. Williams, Jr.
  • Publication number: 20180220107
    Abstract: Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate focal planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds, or more often.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 2, 2018
    Inventor: Franklin H. Williams, JR.
  • Publication number: 20110180670
    Abstract: An In Orbit Transportation & Recovery System (IOSTAR™) (10) is disclosed. One preferred embodiment of the present invention comprises a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Application
    Filed: February 7, 2007
    Publication date: July 28, 2011
    Inventors: Robert F. D'Ausilio, James R. Stuart, Franklin H. Williams, JR.
  • Patent number: 7624950
    Abstract: A preferred In Orbit Transportation & Recovery System (IOSTAR™) (10) includes a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: December 1, 2009
    Assignee: IOSTAR Corporation
    Inventors: Robert F. D'Ausilio, James R. Stuart, Bari M. Southard, Franklin H. Williams, Jr.
  • Patent number: 7611096
    Abstract: A preferred In Orbit Transportation & Recovery System (IOSTAR™) (10) includes a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: November 3, 2009
    Assignee: IOSTAR Corporation
    Inventors: Robert F. D'Ausilio, James R. Stuart, Thomas N. Giaccherini, Franklin H. Williams, Jr.
  • Patent number: 7611097
    Abstract: A preferred In Orbit Transportation & Recovery System (IOSTAR™) (10) includes a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: November 3, 2009
    Assignee: IOSTAR Corporation
    Inventors: Robert F. D'Ausilio, James R. Stuart, Thomas N. Giaccherini, Franklin H. Williams, Jr.
  • Publication number: 20090242704
    Abstract: An In Orbit Transportation & Recovery System (IOSTAR™) (10) is disclosed. One preferred embodiment of the present invention comprises a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Application
    Filed: January 10, 2007
    Publication date: October 1, 2009
    Inventors: Robert F. D'Ausilio, James R. Stuart, Thomas N. Giaccherini, Franklin H. Williams, JR.
  • Patent number: 7588213
    Abstract: A preferred In Orbit Transportation & Recovery System (IOSTAR™) (10) includes a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: September 15, 2009
    Assignee: IOSTAR Corporation
    Inventors: Robert F. D'Ausilio, James R. Stuart, Bari M. Southard, Franklin H. Williams, Jr.
  • Patent number: 7484690
    Abstract: A preferred In Orbit Transportation & Recovery System (IOSTAR™)(10) includes a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: February 3, 2009
    Assignee: Iostar Corporation
    Inventors: Robert F. D'Ausilio, James R. Stuart, Roger X. Lenard, Franklin H. Williams, Jr.
  • Patent number: 7461818
    Abstract: A preferred In Orbit Transportation & Recovery System (IOSTAR™)(10) includes a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move fully deployed spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: December 9, 2008
    Assignee: Iostar Corporation
    Inventors: Robert F. D'Ausilio, Roger X. Lenard, James R. Stuart, Franklin H. Williams, Jr.
  • Publication number: 20080296436
    Abstract: An In Orbit Transportation & Recovery System (IOSTAR™) (10) is disclosed. One preferred embodiment of the present invention comprises a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom(11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Application
    Filed: January 10, 2007
    Publication date: December 4, 2008
    Inventors: Robert F. D'Ausilio, James R. Stuart, Thomas N. Giaccherini, Franklin H. Williams, JR.
  • Patent number: 7216834
    Abstract: An In Orbit Transportation & Recovery System (IOSTAR™) (10). One preferred embodiment of the present invention comprises a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: May 15, 2007
    Assignee: Iostar Corporation
    Inventors: Robert F. D'Ausilio, James R. Stuart, Franklin H. Williams, Jr.
  • Patent number: 7216833
    Abstract: An In Orbit Transportation & Recovery System (IOSTAR™) (10). One preferred embodiment of the present invention comprises a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom ( 11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: May 15, 2007
    Assignee: Iostar Corporation
    Inventors: Robert F. D'Ausilio, Bari M. Southard, James R. Stuart, Franklin H. Williams, Jr.
  • Patent number: 7070151
    Abstract: An In Orbit Transportation & Recovery System (IOSTAR™) (10) One preferred embodiment of the present invention comprises a space tug powered by a nuclear reactor (19). The IOSTAR™ includes a collapsible boom (11) connected at one end to a propellant tank (13) which stores fuel for an electric propulsion system (12). This end of the boom (11) is equipped with docking hardware (14) that is able to grasp and hold a satellite (15) and as a means to refill the tank (13). Radiator panels (16) mounted on the boom (11) dissipate heat from the reactor (19). A radiation shield (20) is situated next to the reactor (19) to protect the satellite payload (15) at the far end of the boom (11). The IOSTAR™ (10) will be capable of accomplishing rendezvous and docking maneuvers which will enable it to move spacecraft between a low Earth parking orbit and positions in higher orbits or to other locations in our Solar System.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: July 4, 2006
    Assignee: IOSTAR Corporation
    Inventors: Robert F. D'Ausilio, Roger X. Lenard, Chauncey W. Uphoff, Franklin H. Williams, Jr.