Patents by Inventor Franz Faupel

Franz Faupel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11137457
    Abstract: A magnetic field sensor element with a piezo electric substrate having predetermined shear wave velocity VS, two pairs of interdigital electrodes, arranged on the substrate on the ends of a delay section, having a period length p of at least 10 micrometers, a non-magnetic, electrically non-conductive guide layer arranged on the substrate along the delay section, and a magnetostrictive functional layer arranged on the guide layer, wherein the shear wave velocity in the guide layer is smaller than VS, wherein a) the substrate is oriented to generate and propagate mechanical shear waves upon applying a temporally periodic, electrical voltage to at least one interdigital electrode pair in the range of frequency VS/p and, wherein b) the thickness of the guide layer equals at least 10% and at most 30% of the period length p of the interdigital electrodes.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 5, 2021
    Assignee: Christian-lbrechts-Universitaet zu Kiel
    Inventors: Eckhard Quandt, Anne Kittmann, Sebastian Zabel, Erdem Yarar, Franz Faupel, Reinhard Knoechel, Michael Hoeft, Phillip Durdaut
  • Publication number: 20190317161
    Abstract: A magnetic field sensor element with a piezo electric substrate having predetermined shear wave velocity VS, two pairs of interdigital electrodes, arranged on the substrate on the ends of a delay section, having a period length p of at least 10 micrometers, a non-magnetic, electrically non-conductive guide layer arranged on the substrate along the delay section, and a magnetostrictive functional layer arranged on the guide layer, wherein the shear wave velocity in the guide layer is smaller than VS, wherein a) the substrate is oriented to generate and propagate mechanical shear waves upon applying a temporally periodic, electrical voltage to at least one interdigital electrode pair in the range of frequency VS/p and, wherein b) the thickness of the guide layer equals at least 10% and at at most 30% of the period length p of the interdigital electrodes.
    Type: Application
    Filed: October 6, 2017
    Publication date: October 17, 2019
    Inventors: Eckhard Quandt, Anne Kittmann, Sebastian Zabel, Erdem Yarar, Franz Faupel, Reinhard Knoechel, Michael Hoeft, Phillip Durdaut
  • Publication number: 20110287181
    Abstract: Disclosed is a method for producing regularly arranged nanowires from a nanowire-forming material on a substrate. Said method is characterized by the following steps: a) the material is introduced into a carrier liquid at a load remaining at least three orders of magnitude below the loading capacity of the carrier liquid; b) a guiding member is placed on the substrate; c) the substrate is heated to a temperature at which a thin film of the carrier liquid undergoes spinodal decrosslinking on the substrate; d) a film of the carrier liquid that is loaded with material is applied to the heated substrate in the surroundings of the guiding member, where a gradient of the average film thickness is obtained perpendicular to the contour of the guiding member; and e) the carrier liquid is evaporated such that the material is left along lines extending perpendicular to the gradient of the film thickness.
    Type: Application
    Filed: November 4, 2008
    Publication date: November 24, 2011
    Inventors: Franz Faupel, Rainer Adelung, Mady Elbahri, Khaled Hirmas