Patents by Inventor Franz J. Baudenbacher
Franz J. Baudenbacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210161395Abstract: An example method includes detecting, via a sensor, vibrations originating from a vein of a subject and obtaining an intensity spectrum of the detected vibrations over a range of frequencies. The method further includes using the obtained intensity spectrum to determine a metric selected from a group that includes: a pulmonary capillary wedge pressure (PCWP), a mean pulmonary arterial pressure, a pulmonary artery diastolic pressure, a left ventricular end diastolic pressure, a left ventricular end diastolic volume, a cardiac output, total blood volume, and a volume responsiveness of the subject. An example computing device and an example non-transitory computer readable medium that are related to the method are disclosed as well.Type: ApplicationFiled: April 13, 2018Publication date: June 3, 2021Inventors: Colleen M. BROPHY, Kyle M. HOCKING, Susan S. EAGLE, Franz J. BAUDENBACHER, Bret D. ALVIS
-
Publication number: 20120156763Abstract: An apparatus and methods for using biological material to discriminate an agent. In one embodiment of the present invention, the method includes the steps of providing at least one cell, exposing at least one cell to an agent, measuring the response of the cell to the agent in terms of a physical quantity related to at least one of the cellular physiological activities of the cell, and identifying the agent from the measured response. The method further includes the step of quantifying the agent from the measured response.Type: ApplicationFiled: August 25, 2011Publication date: June 21, 2012Applicant: VANDERBILT UNIVERSITYInventors: John P. Wikswo, Franz J. Baudenbacher, R. Robert Balcarcel, Theodore A. Bapty, David Cliffel, Sven Eklund, Owen McGuinness, Todd Monroe, Ales Prokop, Mark Andrew Stremler, Andreas Augustinus Werdich, Yang Yuansheng
-
Publication number: 20120003729Abstract: A bioreactor for cultivating living cells in a liquid medium. In one embodiment of the present invention, the bioreactor includes a first substrate having a first surface, an opposite second surface and edges. The bioreactor further includes a second substrate having a first surface and an opposite second surface, defining a cavity with a bottom surface, where the bottom surface is located therebetween the first surface and the second surface. The first surface of the first substrate is received by the second surface of the second substrate to cover the cavity so as to form a channel for receiving cells and a liquid medium. In forming the bioreactor, the channel is sized to allow the growth of a layer of cells on a biocompatible coating layer and a flow of liquid in the channel. The flow of liquid is controlled so as to provide a known shear force to the layer of cells. The flow of liquid can be further controlled so as to provide an environment that simulates a vascular space in the channel.Type: ApplicationFiled: July 1, 2011Publication date: January 5, 2012Applicant: VANDERBILT UNIVERSITYInventors: John P. Wikswo, Franz J. Baudenbacher, Ales Prokop, Eugene J. Leboeuf, Chang Y. Chung, David Cliffel, Frederick R. Haselton, William H. Hofmeister, Charles P. Lin, Lisa J. McCawley, Randall S. Reiserer, Mark A. Stremler
-
Publication number: 20110294202Abstract: A bioreactor for cultivating living cells in a liquid medium. In one embodiment of the present invention, the bioreactor has a first substrate having a first surface and an opposite second surface, defining a chamber therebetween for receiving the cells and the liquid medium. The bioreactor further has a barrier dividing the chamber into a first subchamber and a second subchamber, wherein the barrier has a porosity to allow the first subchamber and the second subchamber in fluid communication and allow at least one predetermined type of cells to permeate between the first subchamber and the second subchamber.Type: ApplicationFiled: May 26, 2011Publication date: December 1, 2011Applicant: VANDERBILT UNIVERSITYInventors: John P. Wikswo, Franz J. Baudenbacher, David Cliffel, Frederick R. Haselton, Eugene J. Leboeuf, Ales Prokop, Randall S. Reiserer, Mark A. Stremler
-
Patent number: 8003378Abstract: A bioreactor for cultivating living cells in a liquid medium. In one embodiment of the present invention, the bioreactor includes a first substrate having a first surface, an opposite second surface and edges. The bioreactor further includes a second substrate having a first surface and an opposite second surface, defining a cavity with a bottom surface, where the bottom surface is located therebetween the first surface and the second surface. The first surface of the first substrate is received by the second surface of the second substrate to cover the cavity so as to form a channel for receiving cells and a liquid medium. In forming the bioreactor, the channel is sized to allow the growth of a layer of cells on a biocompatible coating layer and a flow of liquid in the channel. The flow of liquid is controlled so as to provide a known shear force to the layer of cells. The flow of liquid can be further controlled so as to provide an environment that simulates a vascular space in the channel.Type: GrantFiled: March 5, 2009Date of Patent: August 23, 2011Assignee: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Ales Prokop, Eugene LeBoeuf, Chang Y. Chung, David E. Cliffel, Frederick R. Haselton, William H. Hofmeister, Charles P. Lin, Lisa J. McCawley, Randall S. Reiserer, Mark A. Stremler
-
Patent number: 7981649Abstract: A device and methods for monitoring status of at least one cell, wherein the cell has a membrane forming a substantially enclosed structure and defining an intracellular space therein. In one embodiment of the present invention, the device includes a first substrate having a first surface and an opposite second surface, a second substrate supported by the first substrate, the second substrate having a first surface, an opposite second surface, a body portion between the first surface and the second surface, a first side surface and an opposite second side surface, wherein the body portion defines a first passage between the first side surface and the second side surface and an opening on the first surface of the second substrate and in fluid communication with the first passage, and sidewalls positioned above the first surface of the second substrate.Type: GrantFiled: August 22, 2008Date of Patent: July 19, 2011Assignee: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Owen McGuiness
-
Patent number: 7977089Abstract: A bioreactor for cultivating living cells in a liquid medium. In one embodiment of the present invention, the bioreactor has a first substrate having a first surface and an opposite second surface, defining a chamber therebetween for receiving the cells and the liquid medium. The bioreactor further has a barrier dividing the chamber into a first subchamber and a second subchamber, wherein the barrier has a porosity to allow the first subchamber and the second subchamber in fluid communication and allow at least one predetermined type of cells to permeate between the first subchamber and the second subchamber.Type: GrantFiled: August 27, 2003Date of Patent: July 12, 2011Assignee: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, David Cliffel, Frederick R. Haselton, Eugene J. Leboeuf, Ales Prokop, Randall S. Reiserer, Mark A. Stremler
-
Patent number: 7790443Abstract: A bioreactor with substance injection capability. In one embodiment, the bioreactor includes a first substrate having a first surface, an opposite second surface and edges. The bioreactor further includes a second substrate having a first surface and an opposite second surface, defining a cavity with a bottom surface, where the bottom surface is located therebetween the first surface and the second surface. The first surface of the first substrate is received by the second surface of the second substrate to cover the cavity so as to form a chamber for receiving cells and a liquid medium. A port is formed in the second substrate between the bottom surface and the first surface of the second substrate. As formed, the port is in fluid communication with the chamber to allow a stream of substance to be introduced into the chamber. The stream of substance is controlled so as to provide a gradient, or a concentration gradient of the substance, to the chamber.Type: GrantFiled: August 27, 2003Date of Patent: September 7, 2010Assignee: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Frederick R. Haselton, William H. Hofmeister, Charles P. Lin, Lisa J. McCawley, Mark A. Stremler, Alissa Weaver
-
Patent number: 7713733Abstract: An apparatus and methods for detecting at least one analyte of interest either produced or consumed by a plurality of cell. In one embodiment of the present invention, the method includes the steps of providing a housing defining a chamber, placing a plurality of cells in the chamber, and simultaneously detecting at least two analytes of interest either produced or consumed by the plurality of cells in the chamber.Type: GrantFiled: August 6, 2002Date of Patent: May 11, 2010Assignee: Vanderbilt UniversityInventors: David Cliffel, Franz J. Baudenbacher, John P. Wikswo, Sven Eklund, R. Robert Balcarcel, Jonathan M. Gilligan
-
Publication number: 20090305319Abstract: An apparatus and methods for monitoring the status of a cell that consumes oxygen. In one embodiment of the present invention, the method includes the steps of confining the cell in a sensing volume, measuring dynamically intracellular or extracellular signaling of the cell, and determining the status of the cell from the measured intracellular or extracellular signaling of the cell.Type: ApplicationFiled: August 6, 2002Publication date: December 10, 2009Inventors: Franz J. Baudenbacher, John P. Wikswo, R. Robert Balcarcel, David Cliffel, Sven Eklund, Jonathan Mark Gilligan, Owen McGuinness, Todd Monroe, Ales Prokop, Mark Andrew Stremler, Andreas Augustinus Werdich
-
Publication number: 20090215654Abstract: A bioreactor for cultivating living cells in a liquid medium. In one embodiment of the present invention, the bioreactor includes a first substrate having a first surface, an opposite second surface and edges. The bioreactor further includes a second substrate having a first surface and an opposite second surface, defining a cavity with a bottom surface, where the bottom surface is located therebetween the first surface and the second surface. The first surface of the first substrate is received by the second surface of the second substrate to cover the cavity so as to form a channel for receiving cells and a liquid medium. In forming the bioreactor, the channel is sized to allow the growth of a layer of cells on a biocompatible coating layer and a flow of liquid in the channel. The flow of liquid is controlled so as to provide a known shear force to the layer of cells. The flow of liquid can be further controlled so as to provide an environment that simulates a vascular space in the channel.Type: ApplicationFiled: March 5, 2009Publication date: August 27, 2009Applicant: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Ales Prokop, Eugene J. Leboeuf, Chang Y. Chung, David Cliffel, Frederick R. Haselton, William H. Hofmeister, Charles P. Lin, Lisa J. McCawley, Randall S. Reiserer, Mark A. Stremler
-
Patent number: 7534601Abstract: A bioreactor for cultivating living cells in a liquid medium. In one embodiment of the present invention, the bioreactor includes a first substrate having a first surface, an opposite second surface and edges. The bioreactor further includes a second substrate having a first surface and an opposite second surface, defining a cavity with a bottom surface, where the bottom surface is located therebetween the first surface and the second surface. The first surface of the first substrate is received by the second surface of the second substrate to cover the cavity so as to form a channel for receiving cells and a liquid medium. In forming the bioreactor, the channel is sized to allow the growth of a layer of cells on a biocompatible coating layer and a flow of liquid in the channel. The flow of liquid is controlled so as to provide a known shear force to the layer of cells. The flow of liquid can be further controlled so as to provide an environment that simulates a vascular space in the channel.Type: GrantFiled: August 27, 2003Date of Patent: May 19, 2009Assignee: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Alex Prokop, Eugene J. Leboeuf, Chang Y. Chung, David Cliffel, Frederick R. Haselton, William H. Hofmeister, Charles P. Lin, Lisa J. McCawley, Randall S. Reiserer, Mark A. Stremler
-
Publication number: 20090068700Abstract: A device and methods for monitoring status of at least one cell, wherein the cell has a membrane forming a substantially enclosed structure and defining an intracellular space therein. In one embodiment of the present invention, the device includes a first substrate having a first surface and an opposite second surface, a second substrate supported by the first substrate, the second substrate having a first surface, an opposite second surface, a body portion between the first surface and the second surface, a first side surface and an opposite second side surface, wherein the body portion defines a first passage between the first side surface and the second side surface and an opening on the first surface of the second substrate and in fluid communication with the first passage, and sidewalls positioned above the first surface of the second substrate.Type: ApplicationFiled: August 22, 2008Publication date: March 12, 2009Applicant: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Owen McGuiness
-
Patent number: 7435578Abstract: A device and methods for monitoring status of at least one cell, wherein the cell has a membrane forming a substantially enclosed structure and defining an intracellular space therein. In one embodiment of the present invention, the device includes a first substrate having a first surface and an opposite second surface, a second substrate supported by the first substrate, the second substrate having a first surface, an opposite second surface, a body portion between the first surface and the second surface, a first side surface and an opposite second side surface, wherein the body portion defines a first passage between the first side surface and the second side surface and an opening on the first surface of the second substrate and in fluid communication with the first passage, and sidewalls positioned above the first surface of the second substrate.Type: GrantFiled: August 6, 2002Date of Patent: October 14, 2008Assignee: Vanderbilt UniversityInventors: John P. Wikswo, Franz J. Baudenbacher, Owen McGuinness
-
Patent number: 7002341Abstract: A method and apparatus performs high resolution imaging. The disclosed apparatus includes a low temperature SQUID sensor mounted in close proximity to a dewar thin window. A radiation shield has an extension surrounding the detection coil.Type: GrantFiled: August 27, 2003Date of Patent: February 21, 2006Assignee: Vanderbilt UniversityInventors: Franz J. Baudenbacher, Nicholas T. Peters, John P. Wikswo, Jr., Robert L. Fagaly
-
Publication number: 20040145366Abstract: A method and apparatus are disclosed for high resolution imaging. The disclosed apparatus includes a low temperature SQUID sensor mounted in close proximity to a dewar thin window. A radiation shield has an extension surrounding the detection coil.Type: ApplicationFiled: August 27, 2003Publication date: July 29, 2004Inventors: Franz J. Baudenbacher, Nicholas T. Peters, John P. Wikswo, Robert L. Fagaly