Patents by Inventor Franz Niedernostheide

Franz Niedernostheide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070120170
    Abstract: A vertical semiconductor device comprises a semiconductor body, a first contact and a second contact, wherein a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and a third semiconductor region of a second conductivity type are formed in the semiconductor body in a direction from the first contact to the second contact, wherein a basic doping density of the second semiconductor region is smaller than a doping density of the third semiconductor region, and wherein in the second semiconductor region a semiconductor zone of the second conductivity type is arranged in which the doping density is increased relative to the basic doping density of the second semiconductor region.
    Type: Application
    Filed: October 11, 2006
    Publication date: May 31, 2007
    Applicant: Infineon Technologies Austria AG
    Inventors: Franz Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20070051972
    Abstract: A main thyristor (1) has a recovery protection which is integrated into a drive thyristor (2) whose n-doped emitter (25) is electrically connected to a main thyristor control terminal (140). Moreover, the p-doped emitter (28) of the drive thyristor (2) is electrically connected to the p-doped emitter (18) of the main thyristor (1). Various optional measures for realizing a recovery protection are provided in this case. A method for producing a thyristor system having a main thyristor and a drive thyristor, the drive thyristor (2) having anode short circuits (211) involves introducing particles (230) into a target region (225) of the semiconductor body (200) of the drive thyristor (2), the distance between the target region (225) and a front side (201) of the semiconductor body (200) opposite to the rear side (202) being less than or equal to the distance between the p-doped emitter (28) and the front side (201).
    Type: Application
    Filed: August 8, 2006
    Publication date: March 8, 2007
    Inventors: Hans-Joachim Schulze, Franz Niedernostheide, Uwe Kellner-Werdehausen, Reiner Barthelmess
  • Publication number: 20060286753
    Abstract: A method for producing a buried stop zone in a semiconductor body and a semiconductor component having a stop zone, has the method steps of: providing a semiconductor body having a first and a second side and a basic doping of a first conduction type, irradiating the semiconductor body via one of the sides with protons, as a result of which protons are introduced into a first region of the semiconductor body situated at a distance from the irradiation side, carrying out a thermal process in which the semiconductor body is heated to a predetermined temperature for a predetermined time duration, the temperature and the duration being chosen such that hydrogen-induced donors are generated both in the first region and in a second region adjacent to the first region in the direction of the irradiation side.
    Type: Application
    Filed: June 8, 2006
    Publication date: December 21, 2006
    Inventors: Reiner Barthelmess, Anton Mauder, Franz Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20050258455
    Abstract: A semiconductor component has a first and a second contact-making region, and a semiconductor volume arranged between the first and the second contact-making region. Within the semiconductor volume, it is possible to generate a current flow that runs from the first contact-making region to the second contact-making region, or vice versa. The semiconductor volume and/or the contact-making regions are configured in such a way that the local flow cross-section of a locally elevated current flow, which is caused by current splitting, is enlarged at least in partial regions of the semiconductor volume.
    Type: Application
    Filed: February 2, 2005
    Publication date: November 24, 2005
    Applicant: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz Niedernostheide, Gerald Soelkner