Patents by Inventor Franz Steinbacher

Franz Steinbacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220158469
    Abstract: Systems and methods are provided for supplying an electrical power to a medical imaging system. The system comprises a primary power supply unit for providing an input electrical power. The system further comprises an H-bridge converter connected to the primary power supply unit and configured to receive an electrical power from the primary power supply unit. The system further comprises at least one battery line comprising one or more batteries. The at least one battery line is connected to the H-bridge converter and the H-bridge converter is configured to charge the one or more batteries of the at least one battery line using the input electrical power from the primary power supply unit. The system further comprises an output connected to the H-bridge converter and configured to supply the electrical power stored in the one or more batteries to the medical imaging system.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 19, 2022
    Inventors: Markus Paarhammer, Franz Steinbacher
  • Patent number: 11162896
    Abstract: Method and gas analyzer for measuring the concentration of a gas component in a measurement gas, a wavelength-tunable laser diode is actuated with a current, one part of the light generated by the laser diode is guided through the measurement gas to a measuring detector to generate a measuring signal, the other part of the light is guided to a monitor detector to generate a monitor signal, the current is varied in periodically consecutive scanning intervals to scan an absorption line of interest of the gas component as a function of the wavelength, the current is further modulated with a radio-frequency noise signal having a lower cut-off frequency selected as a function of the properties of the laser diode and high enough to ensure no wavelength modulation occurs and the measuring signal is correlated with the monitor signal and then evaluated to generate a measurement result.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 2, 2021
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Steinbacher
  • Publication number: 20210096068
    Abstract: Method and gas analyzer for measuring the concentration of a gas component in a measurement gas, a wavelength-tunable laser diode is actuated with a current, one part of the light generated by the laser diode is guided through the measurement gas to a measuring detector to generate a measuring signal, the other part of the light is guided to a monitor detector to generate a monitor signal, the current is varied in periodically consecutive scanning intervals to scan an absorption line of interest of the gas component as a function of the wavelength, the current is further modulated with a radio-frequency noise signal having a lower cut-off frequency selected as a function of the properties of the laser diode and high enough to ensure no wavelength modulation occurs and the measuring signal is correlated with the monitor signal and then evaluated to generate a measurement result.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 1, 2021
    Inventor: Franz STEINBACHER
  • Patent number: 10802123
    Abstract: An ultrasound probe may include a mechanical transducer and a probe housing. The mechanical transducer may be rotatable about an axis. The mechanical transducer may be operable to acquire ultrasound image data at one or more rotational positions of a plurality of rotational positions. The probe housing may include a probe cap covering the mechanical transducer. The mechanical transducer may be directed toward the probe cap at each of the plurality of rotational positions. The probe cap may include a defined structure having a first thickness and a remainder portion having a second thickness different than the first thickness. In various embodiments, at least a portion of the defined structure is at a center section of the probe cap corresponding with a center rotational position of the mechanical transducer.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: October 13, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stefan Holl, Franz Steinbacher
  • Publication number: 20190107612
    Abstract: An ultrasound probe may include a mechanical transducer and a probe housing. The mechanical transducer may be rotatable about an axis. The mechanical transducer may be operable to acquire ultrasound image data at one or more rotational positions of a plurality of rotational positions. The probe housing may include a probe cap covering the mechanical transducer. The mechanical transducer may be directed toward the probe cap at each of the plurality of rotational positions. The probe cap may include a defined structure having a first thickness and a remainder portion having a second thickness different than the first thickness. In various embodiments, at least a portion of the defined structure is at a center section of the probe cap corresponding with a center rotational position of the mechanical transducer.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 11, 2019
    Inventors: Stefan Holl, Franz Steinbacher
  • Patent number: 10132747
    Abstract: An absorption spectrometer which measures a gas component concentration in a measured gas and which operates via wavelength modulation spectroscopy, wherein the light wavelength of a wavelength-tunable light source is periodically varied over a gas component absorption line of interest and simultaneously sinusoidally modulated with a high frequency and a low amplitude signal, and wherein the measurement signal of a detector is demodulated in a phase-sensitive manner at the frequency and/or a harmonic of the frequency and further analyzed, where modulation starts in each period or each n-th period with the frequency in a time interval before the beginning of the time function and is performed with a higher amplitude than during the time function to demodulate the measurement signal in a phase-synchronous manner, where a device provided for the phase-sensitive demodulation is synchronized during the time interval such that a cable for transmitting synchronization signals is no longer necessary.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: November 20, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Steinbacher
  • Publication number: 20180003624
    Abstract: An absorption spectrometer which measures a gas component concentration in a measured gas and which operates via wavelength modulation spectroscopy, wherein the light wavelength of a wavelength-tunable light source is periodically varied over a gas component absorption line of interest and simultaneously sinusoidally modulated with a high frequency and a low amplitude signal, and wherein the measurement signal of a detector is demodulated in a phase-sensitive manner at the frequency and/or a harmonic of the frequency and further analyzed, where modulation starts in each period or each n-th period with the frequency in a time interval before the beginning of the time function and is performed with a higher amplitude than during the time function to demodulate the measurement signal in a phase-synchronous manner, where a device provided for the phase-sensitive demodulation is synchronized during the time interval such that a cable for transmitting synchronization signals is no longer necessary.
    Type: Application
    Filed: December 2, 2015
    Publication date: January 4, 2018
    Inventor: Franz STEINBACHER
  • Patent number: 9797832
    Abstract: Method and gas analyzer for measuring the concentration of a gas component in a sample gas, wherein to measure the concentration of a gas component in a sample gas, a laser diode is actuated by a current and light generated by the laser diode is guided through the sample gas to a detector, the current is simultaneously varied within periodically successive sampling intervals for the wavelength-dependent sampling of an absorption line of interest of the gas component, and the current can be additionally modulated sinusoidally based on wavelength modulation spectroscopy with a low frequency and small amplitude, such that a measuring signal generated by the detector is evaluated to form a measurement result, where to improve the measuring signal-noise ratio and achieve a much lower detection limit with the same measuring distance, the current is modulated with a high (RF) frequency in the GHz range so that no wavelength modulation occurs, and an RF modulation amplitude is selected at the maximum level using the
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: October 24, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Steinbacher
  • Patent number: 9709487
    Abstract: A method for measuring the concentration of a gas component in a measuring gas. An absorption line of the gas component is varied as a function of the wavelength of the light of a wavelength-tunable light source within a periodically sequential scanning interval. The absorption line of the gas component is modulated with a frequency (f0). Modulated light is guided through the measuring gas onto a detector. A measurement signal generated by the detector is demodulated upon determining a harmonic (nf0) of the frequency (f0). A measurement result is produced by fitting a setpoint curve to the profile of the demodulated measurement signal. Both demodulated measurement signal and setpoint cure are filtered with the aid of the same filter function. The filter function is operative to suppress noise signal components of the demodulated measurement signal that disturb both signal components of the demodulated measurement signal and the setpoint curve.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: July 18, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralf Bitter, Thomas Hankiewicz, Christoph Wolfgang Marquardt, Adrian Mucha, Jan Nygren, Kai-Uwe Pleban, Franz Steinbacher
  • Patent number: 9640945
    Abstract: Method in which, in order to actuate a wavelength-tunable laser diode in a spectrometer, a power-time function is predetermined instead of a current-time function, wherein the laser diode is tuned periodically over a wavelength range in accordance with the power-time function. For this purpose, a current profile (i) with which the laser diode is actuated is determined from the power-time function and measured values of the voltage (u) present at the laser diode.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: May 2, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Steinbacher
  • Patent number: 9546989
    Abstract: A method for measuring the concentration of a gas component in a measurement gas using a gas analyzer comprises varying the wavelength of the light of a wavelength-tunable light source within periodically consecutive scan intervals for wavelength-dependent scanning of a gas component absorption line of interest. The method also comprises modulating the wavelength of the light of the wavelength-tunable light source with a frequency, guiding the modulated light through the measurement gas onto a detector and demodulating a measurement signal generated by the detector in the event of a harmonic of the frequency. The method further comprises producing a measurement result by fitting a desired curve to the profile of the demodulated measurement signal. A function orthogonal to the desired curve is provided, and an orthogonal component of the measurement result is produced by fitting the orthogonal function to the profile of the demodulated measurement signal.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 17, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralf Bitter, Thomas Hankiewicz, Christoph Wolfgang Marquardt, Jan Nygren, Kai-Uwe Pleban, Franz Steinbacher
  • Publication number: 20160299065
    Abstract: Method and gas analyzer for measuring the concentration of a gas component in a sample gas, wherein to measure the concentration of a gas component in a sample gas, a laser diode is actuated by a current and light generated by the laser diode is guided through the sample gas to a detector, the current is simultaneously varied within periodically successive sampling intervals for the wavelength-dependent sampling of an absorption line of interest of the gas component, and the current can be additionally modulated sinusoidally based on wavelength modulation spectroscopy with a low frequency and small amplitude, such that a measuring signal generated by the detector is evaluated to form a measurement result, where to improve the measuring signal-noise ratio and achieve a much lower detection limit with the same measuring distance, the current is modulated with a high (RF) frequency in the GHz range so that no wavelength modulation occurs, and an RF modulation amplitude is selected at the maximum level using the
    Type: Application
    Filed: September 23, 2015
    Publication date: October 13, 2016
    Inventor: Franz STEINBACHER
  • Patent number: 9310475
    Abstract: A method is provided for acquiring ultrasonic data using multi-beam transmission. The method includes transmitting a first transmit beam using a first subset of element and transmitting a second transmit beam using a second subset of the elements. The first and second subsets of elements comprising at least one common element. The first and second beams are transmitted simultaneously. The elements are divided into the first and second subsets that may comprise at least partially different subsets of elements. An ultrasonic system is also provided that comprises a transducer comprising an array of elements and a beamformer for dividing the array of elements into at least first and second subsets of elements. The first and second subsets of elements at least partially overlapping. A transmitter drives the first and second subsets of elements to simultaneously transmit different first and second transmit beams, respectively. A receiver receives receive lines representative of the first and second transmit beams.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: April 12, 2016
    Assignee: General Electric Company
    Inventors: Franz Steinbacher, Matthias Schmied
  • Patent number: 9261453
    Abstract: Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 16, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Steinbacher
  • Publication number: 20150204779
    Abstract: A method for measuring the concentration of a gas component in a measuring gas. An absorption line of the gas component is varied as a function of the wavelength of the light of a wavelength-tunable light source within a periodically sequential scanning interval. The absorption line of the gas component is modulated with a frequency (f0) Modulated light is guided through the measuring gas onto a detector. A measurement signal generated by the detector is demodulated upon determining a harmonic (nf0) of the frequency (f0). A measurement result is produced by fitting a setpoint curve to the profile of the demodulated measurement signal. Both demodulated measurement signal and setpoint cure are filtered with the aid of the same filter function. The filter function is operative to suppress noise signal components of the demodulated measurement signal that disturb both signal components of the demodulated measurement signal and the setpoint curve.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 23, 2015
    Inventors: Ralf Bitter, Thomas Hankiewicz, Christoph Wolfgang Marquardt, Adrian Mucha, Jan Nygren, Kai-Uwe Pleban, Franz Steinbacher
  • Publication number: 20150089993
    Abstract: A method for measuring the concentration of a gas component in a measurement gas using a gas analyzer comprises varying the wavelength of the light of a wavelength-tunable light source within periodically consecutive scan intervals for wavelength-dependent scanning of a gas component absorption line of interest. The method also comprises modulating the wavelength of the light of the wavelength-tunable light source with a frequency, guiding the modulated light through the measurement gas onto a detector and demodulating a measurement signal generated by the detector in the event of a harmonic of the frequency. The method further comprises producing a measurement result by fitting a desired curve to the profile of the demodulated measurement signal. A function orthogonal to the desired curve is provided, and an orthogonal component of the measurement result is produced by fitting the orthogonal function to the profile of the demodulated measurement signal.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Ralf Bitter, Thomas Hankiewicz, Christoph Wolfgang Marquardt, Jan Nygren, Kai-Uwe Pleban, Franz Steinbacher
  • Publication number: 20150085288
    Abstract: Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 26, 2015
    Inventor: Franz STEINBACHER
  • Publication number: 20140247843
    Abstract: Method in which, in order to actuate a wavelength-tunable laser diode in a spectrometer, a power-time function is predetermined instead of a current-time function, wherein the laser diode is tuned periodically over a wavelength range in accordance with the power-time function. For this purpose, a current profile (i) with which the laser diode is actuated is determined from the power-time function and measured values of the voltage (u) present at the laser diode.
    Type: Application
    Filed: February 11, 2014
    Publication date: September 4, 2014
    Inventor: Franz Steinbacher
  • Patent number: 8038619
    Abstract: A motor driver for an ultrasound system is provided. The ultrasound system includes a transmitter and receiver, both communicatively coupled to a transducer array of an ultrasound probe. The ultrasound system further includes a digital motor driver for controlling movement of the transducer array.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventor: Franz Steinbacher
  • Publication number: 20110060225
    Abstract: Various embodiments of an ultrasound probe for use with an ultrasound system are provided to enable local waveform generation with respect to the ultrasound probe. The ultrasound probe includes a plurality of transducer elements which are independently configured to transmit distinct waveforms. Certain embodiments include a variety of probes that house one or more waveform generators on application specific integrated circuits (ASICs).
    Type: Application
    Filed: September 9, 2009
    Publication date: March 10, 2011
    Applicant: General Electric Company
    Inventors: Scott D. Cogan, Trym Haakon Eggen, Lukas Bauer, Armin Schoisswohl, Franz Steinbacher, Bruno Haider