Patents by Inventor Franziska Brem

Franziska Brem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10872830
    Abstract: A power semiconductor device includes a base plate; a Si chip including a Si substrate, the Si chip attached to the base plate; a first metal preform pressed with a first press pin against the Si chip; a wide bandgap material chip comprising a wide bandgap substrate and a semiconductor switch provided in the wide bandgap substrate, the wide bandgap material chip attached to the base plate; and a second metal preform pressed with a second press pin against the wide bandgap material chip; the Si chip and the wide bandgap material chip are connected in parallel via the base plate and via the first press pin and the second press pin; the first metal preform is adapted for forming a conducting path through the Si chip, when heated by an overcurrent; and the second metal preform is adapted for forming an temporary conducting path through the wide bandgap material chip or an open circuit, when heated by an overcurrent.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: December 22, 2020
    Assignee: ABB Schweiz AG
    Inventors: Chunlei Liu, Juergen Schuderer, Franziska Brem, Munaf Rahimo, Peter Karl Steimer, Franc Dugal
  • Patent number: 10797586
    Abstract: A power module included a plurality of normally-on semiconductor switches based on a wide bandgap substrate, the normally-on semiconductor switches connected in parallel; and a balancing unit including a capacitor and a balancing semiconductor switch connected in series, which are connected in parallel to the normally-on semiconductor switches.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: October 6, 2020
    Assignee: ABB Schweiz AG
    Inventors: Uwe Drofenik, Francisco Canales, Chunlei Liu, Franziska Brem
  • Patent number: 10673353
    Abstract: A converter cell for a modular converter includes at least one power semiconductor switch for switching a cell current through the converter cell; a cell capacitor interconnected with the at least one power semiconductor switch, such that the cell capacitor is loadable by the cell current; a controller for switching the at least one power semiconductor switch, wherein the controller is supplyable with auxiliary power from the cell capacitor; and a photovoltaic cell for providing initial and/or further auxiliary power to the controller.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 2, 2020
    Assignee: ABB Schweiz AG
    Inventors: Uwe Drofenik, Franziska Brem, Francisco Canales
  • Publication number: 20200059155
    Abstract: A power module included a plurality of normally-on semiconductor switches based on a wide bandgap substrate, the normally-on semiconductor switches connected in parallel; and a balancing unit including a capacitor and a balancing semiconductor switch connected in series, which are connected in parallel to the normally-on semiconductor switches.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Uwe Drofenik, Francisco Canales, Chunlei Liu, Franziska Brem
  • Publication number: 20190355634
    Abstract: A power semiconductor device includes a base plate; a Si chip including a Si substrate, the Si chip attached to the base plate; a first metal preform pressed with a first press pin against the Si chip; a wide bandgap material chip comprising a wide bandgap substrate and a semiconductor switch provided in the wide bandgap substrate, the wide bandgap material chip attached to the base plate; and a second metal preform pressed with a second press pin against the wide bandgap material chip; the Si chip and the wide bandgap material chip are connected in parallel via the base plate and via the first press pin and the second press pin; the first metal preform is adapted for forming a conducting path through the Si chip, when heated by an overcurrent; and the second metal preform is adapted for forming an temporary conducting path through the wide bandgap material chip or an open circuit, when heated by an overcurrent.
    Type: Application
    Filed: August 1, 2019
    Publication date: November 21, 2019
    Inventors: Chunlei Liu, Juergen Schuderer, Franziska Brem, Munaf Rahimo, Peter Karl Steimer, Franc Dugal
  • Publication number: 20180351474
    Abstract: A converter cell for a modular converter includes at least one power semiconductor switch for switching a cell current through the converter cell; a cell capacitor interconnected with the at least one power semiconductor switch, such that the cell capacitor is loadable by the cell current; a controller for switching the at least one power semiconductor switch, wherein the controller is supplyable with auxiliary power from the cell capacitor; and a photovoltaic cell for providing initial and/or further auxiliary power to the controller.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 6, 2018
    Inventors: Uwe Drofenik, Franziska Brem, Francisco Canales
  • Publication number: 20160079156
    Abstract: The present disclosure describes a power electronics module comprising a lead frame in which a chip of a first semiconductor device is embedded, a first PCB mounted on top of the lead frame and the chip of the first semiconductor device, and a support frame mounted on top of the PCB, the support frame comprising a cavity in which the chip of a second semiconductor device is embedded, wherein the chips of the first semiconductor device and the second semiconductor device are positioned on top of each other, and the first PCB comprises a first electrically conducting path between the chips of the first semiconductor device and the second semiconductor device.
    Type: Application
    Filed: August 17, 2015
    Publication date: March 17, 2016
    Inventors: Chunlei Liu, Didier Cottet, Franziska Brem, Slavo Kicin
  • Patent number: 8791532
    Abstract: The sensor assembly comprises a substrate (1), such as a flexible printed circuit board, and a sensor chip (2) flip-chip mounted to the substrate (1), with a first side (3) of the sensor chip (2) facing the substrate (1). A sensing area (4) and contact pads (5) are integrated on the first side (3) of the sensor chip (2) and located in a chamber (17) between the substrate (1) and the sensor chip (2). Chamber (17) is bordered along at least two sides by a dam (16). Underfill (18) and/or solder flux is arranged between the sensor chip (2) and the substrate (1), and the dam (16) prevents the underfill from entering the chamber (17). An opening (19) extends from the chamber to the environment and is located between the substrate (1) and the sensor chip (2) or extends through the sensor chip (2).
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: July 29, 2014
    Assignee: Sensirion AG
    Inventors: Markus Graf, Werner Hunziker, Franziska Brem, Felix Mayer
  • Patent number: 8736002
    Abstract: The sensor assembly comprises a substrate (1), such as a flexible printed circuit board, and a sensor chip (2) flip-chip mounted to the substrate (1), with a first side (3) of the sensor chip (2) facing the substrate (1). A sensing area (4) and contact pads (5) are integrated on the first side (3) of the sensor chip (2). Underfill (18) and/or solder flux is arranged between the sensor chip (2) and the substrate (1). The sensor chip (2) extends over an edge (12) of the substrate (1), with the edge (12) of the substrate (1) extending between the contact pads (5) and the sensing area (4) over the whole sensor chip (2). A dam (16) can be provided along the edge (12) of the substrate (1) for even better separation of the underfill (18) and the sensing area (4). This de sign allows for a simple alignment of the sensor chip on the substrate (1) and prevents underfill (18) from covering the sensing area (4).
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 27, 2014
    Assignee: Sensirion AG
    Inventors: Markus Graf, Werner Hunziker, Franziska Brem, Felix Mayer
  • Publication number: 20120267731
    Abstract: The sensor assembly comprises a substrate (1), such as a flexible printed circuit board, and a sensor chip (2) flip-chip mounted to the substrate (1), with a first side (3) of the sensor chip (2) facing the substrate (1). A sensing area (4) and contact pads (5) are integrated on the first side (3) of the sensor chip (2) and located in a chamber (17) between the substrate (1) and the sensor chip (2). Chamber (17) is bordered along at least two sides by a dam (16). Underfill (18) and/or solder flux is arranged between the sensor chip (2) and the substrate (1), and the dam (16) prevents the underfill from entering the chamber (17). An opening (19) extends from the chamber to the environment and is located between the substrate (1) and the sensor chip (2) or extends through the sensor chip (2).
    Type: Application
    Filed: November 18, 2009
    Publication date: October 25, 2012
    Inventors: Markus Graf, Werner Hunziker, Franziska Brem, Felix Mayer
  • Publication number: 20120217593
    Abstract: The sensor assembly comprises a substrate (1), such as a flexible printed circuit board, and a sensor chip (2) flip-chip mounted to the substrate (1), with a first side (3) of the sensor chip (2) facing the substrate (1). A sensing area (4) and contact pads (5) are integrated on the first side (3) of the sensor chip (2). Underfill (18) and/or solder flux is arranged between the sensor chip (2) and the substrate (1). The sensor chip (2) extends over an edge (12) of the substrate (1), with the edge (12) of the substrate (1) extending between the contact pads (5) and the sensing area (4) over the whole sensor chip (2). A dam (16) can be provided along the edge (12) of the substrate (1) for even better separation of the underfill (18) and the sensing area (4). This de sign allows for a simple alignment of the sensor chip on the substrate (1) and prevents underfill (18) from covering the sensing area (4).
    Type: Application
    Filed: November 18, 2009
    Publication date: August 30, 2012
    Inventors: Markus Graf, Werner Hunziker, Franziska Brem, Felix Mayer
  • Patent number: 7901971
    Abstract: A method for packaging a sensor device having a sensitive structure integrated on a semiconductor chip is provided. When molding the device package, an inward extending section of the mold maintains an access opening to the sensor. A buffer layer is arranged on the chip between the inward extending section and the sensitive structure. The buffer layer protects the sensitive structure from damage by the inward extending section and acts as a seal while casting the housing. The buffer layer also covers at least part of the semiconductor electronic components of the circuitry integrated onto the chip. By covering these components, mechanical stress, as it is e.g. caused by different thermal expansion coefficients of the packaging and the chip, can be reduced.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: March 8, 2011
    Assignee: Sensirion AG
    Inventors: Werner Hunziker, Franziska Brem, René Hummel
  • Publication number: 20100117185
    Abstract: A temperature sensor with a bandgap circuit is provided. The bandgap circuit is covered by a buffer layer of photoresist. The device is packaged in a housing. By providing the buffer layer, mechanical stress in the bandgap circuit, as it is e.g. caused by different thermal expansion coefficients of the packaging and the chip, can be reduced. This improves the accuracy of the device.
    Type: Application
    Filed: July 14, 2009
    Publication date: May 13, 2010
    Inventors: Werner Hunziker, Franziska Brem, René Hummel, Markus Graf
  • Publication number: 20100035373
    Abstract: A method for packaging a sensor device having a sensitive structure integrated on a semiconductor chip is provided. When molding the device package, an inward extending section of the mold maintains an access opening to the sensor. A buffer layer is arranged on the chip between the inward extending section and the sensitive structure. The buffer layer protects the sensitive structure from damage by the inward extending section and acts as a seal while casting the housing. The buffer layer also covers at least part of the semiconductor electronic components of the circuitry integrated onto the chip. By covering these components, mechanical stress, as it is e.g. caused by different thermal expansion coefficients of the packaging and the chip, can be reduced.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 11, 2010
    Inventors: Werner Hunziker, Franziska Brem, Rene Hummel