Patents by Inventor Fred Berkowitz

Fred Berkowitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10424961
    Abstract: Disclosed is a method for identifying a battery type and/or a battery user. Measuring circuitry may be used to collect battery parameters that may be analyzed by control circuitry to create an adaptive charge profile that is applied to a battery by charging circuitry. Battery parameters may be recorded in a battery use signature. Logic may be used to process a battery use signature and identify a single user across multiple battery operated devices and/or discriminate between multiple users of a device. In some cases, battery use signature may be used to identify battery information including the make, model, and lot from which the battery was manufactured.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: September 24, 2019
    Assignee: Qnovo Inc.
    Inventors: Nadim Maluf, Fred Berkowitz
  • Patent number: 10389156
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to applying a charge pulse to the terminals of the battery during a charging operation, measure a plurality of voltages of the battery which are in response to the first charge pulse, determine a charge pulse voltage (CPV) of the battery, wherein the charge pulse voltage is a peak voltage which is in response to the first charge pulse, determine whether the CPV of the battery is within a predetermined range or greater than a predetermined upper limit value and adapt one or more characteristics of a charge packet if the CPV is outside the predetermined range or is greater than a predetermined upper limit value.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: August 20, 2019
    Assignee: Qnovo Inc.
    Inventors: Fred Berkowitz, Dania Ghantous, Nadim Maluf
  • Publication number: 20190120910
    Abstract: Systems and apparatus may carry out analysis of battery physical phenomena, and characterize batteries based on phenomena occurring in particular time and/or frequency domains. These systems may be additionally responsible for charging and/or monitoring a rechargeable battery. Examples of battery physical phenomena include mass transport (e.g., diffusion and/or migration) in battery electrolytes, mass transport in battery electrodes, and reactions on battery electrodes.
    Type: Application
    Filed: November 7, 2018
    Publication date: April 25, 2019
    Inventors: Dania Ghantous, Fred Berkowitz, Nadim Maluf
  • Publication number: 20190072618
    Abstract: Batteries and associated charging conditions or other operating conditions are evaluated by a computational model that classifies or characterizes the battery and associated conditions. Such battery model may classify batteries according to any of many different considerations such as whether the conditions are safe or unsafe or whether the conditions are likely to unnecessarily degrade the future performance of the battery. In some cases, the battery model executes while the battery is installed in an electronic device such as a smart phone or a vehicle. In some cases, the battery model executes and provides results (e.g., a classification of the battery) in real time while the battery is installed and being charged.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Inventors: Dania Ghantous, Fred Berkowitz, Nadim Maluf
  • Patent number: 10128678
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to applying a charge pulse to the terminals of the battery during a charging operation, measure a plurality of voltages of the battery which are in response to the first charge pulse, determine a charge pulse voltage (CPV) of the battery, wherein the charge pulse voltage is a peak voltage which is in response to the first charge pulse, determine whether the CPV of the battery is within a predetermined range or greater than a predetermined upper limit value and adapt one or more characteristics of a charge packet if the CPV is outside the predetermined range or is greater than a predetermined upper limit value.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 13, 2018
    Assignee: Qnovo Inc.
    Inventors: Fred Berkowitz, Dania Ghantous, Nadim Maluf, Christina Peabody
  • Patent number: 10067198
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to determining data which is representative of the state of health, or a change therein, of the battery using the data which is representative of (i) the relaxation time of the battery and/or (ii) the overpotential of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to adapt one or more characteristics of a charge signal using data which is representative of the state of health, or a change therein, of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to determine a state of charge of the battery using data which is representative of the state of health, or a change therein, of the battery.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 4, 2018
    Assignee: Qnovo Inc.
    Inventors: Nadim Maluf, Dania Ghantous, Fred Berkowitz, Christina Peabody
  • Publication number: 20180090947
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to applying a charge pulse to the terminals of the battery during a charging operation, measure a plurality of voltages of the battery which are in response to the first charge pulse, determine a charge pulse voltage (CPV) of the battery, wherein the charge pulse voltage is a peak voltage which is in response to the first charge pulse, determine whether the CPV of the battery is within a predetermined range or greater than a predetermined upper limit value and adapt one or more characteristics of a charge packet if the CPV is outside the predetermined range or is greater than a predetermined upper limit value.
    Type: Application
    Filed: October 11, 2017
    Publication date: March 29, 2018
    Inventors: Fred Berkowitz, Dania Ghantous, Nadim Maluf
  • Patent number: 9912181
    Abstract: A system to recharge a battery including a first current-voltage source to generate a first signal, a second current-voltage source to generate a second signal, a first inductor-capacitor circuit to generate the first DC current-voltage signal using the first signal, a second inductor-capacitor circuit to generate the second DC current-voltage signal using the second signal, wherein the first and second inductor-capacitor circuits are spaced apart by a predetermined distance. The system also includes a temperature sensor adapted to generate temperature data during the charging operation, and control circuitry configured to: (i) determine whether the first temperature data is out-of-specification, and (ii) generate one or more control signals to adjust the first and second DC current-voltage signals, in response to the first temperature data being out-of-specification.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: March 6, 2018
    Assignee: Qnovo Inc.
    Inventors: Mark Gurries, Fred Berkowitz, Nadim Maluf, David Bruce Koons, Miroslav Zmrzli
  • Publication number: 20170346305
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to applying a charge pulse to the terminals of the battery during a charging operation, measure a plurality of voltages of the battery which are in response to the first charge pulse, determine a charge pulse voltage (CPV) of the battery, wherein the charge pulse voltage is a peak voltage which is in response to the first charge pulse, determine whether the CPV of the battery is within a predetermined range or greater than a predetermined upper limit value and adapt one or more characteristics of a charge packet if the CPV is outside the predetermined range or is greater than a predetermined upper limit value.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Fred Berkowitz, Dania Ghantous, Nadim Maluf, Christina Peabody
  • Patent number: 9791513
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to adjust, correct and/or compensate a state of charge of the battery using the data which is representative of the relaxation time (e.g., full relaxation time) of the battery. The techniques and/or circuitry may determine the data which is representative of a relaxation time based on or using: (i) the rate of decay of the voltage at the terminals of the battery after terminating application of the charge current to the battery, (ii) a voltage which is constant or substantially constant after termination of the charge current and/or (iii) an amount of time associated with the decay of the voltage at the terminals of the battery to at least a measured or predetermined voltage. Notably, the charge signal or current may include a plurality of pulses.
    Type: Grant
    Filed: April 11, 2015
    Date of Patent: October 17, 2017
    Assignee: Qnovo Inc.
    Inventors: Nadim Maluf, Dania Ghantous, Fred Berkowitz
  • Patent number: 9787122
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to applying a charge pulse to the terminals of the battery during a charging operation, measure a plurality of voltages of the battery which are in response to the first charge pulse, determine a charge pulse voltage (CPV) of the battery, wherein the charge pulse voltage is a peak voltage which is in response to the first charge pulse, determine whether the CPV of the battery is within a predetermined range or greater than a predetermined upper limit value and adapt one or more characteristics of a charge packet if the CPV is outside the predetermined range or is greater than a predetermined upper limit value.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: October 10, 2017
    Assignee: Qnovo Inc.
    Inventors: Fred Berkowitz, Dania Ghantous, Nadim Maluf, Christina Peabody
  • Patent number: 9726554
    Abstract: Techniques and circuitry, in one embodiment, determine a temperature of a battery by applying a calibration packet to the battery's terminals and at the battery's first SOC, wherein the calibration packet includes a first pulse (charge or discharge) which temporally precedes a rest period. In one embodiment, measurement circuitry measures a first terminal voltage at a time immediately prior to or at a beginning of the first pulse of the calibration packet, and a second terminal voltage, in response to the calibration packet, at a time during the partial relaxation time period of a battery. Control circuitry determines a partial relaxation time voltage (VPRT) at the battery's first SOC using the first and second terminal voltages and determines a temperature of the battery by correlating the VPRT at the first SOC to a temperature of the battery at the battery's current SOH.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 8, 2017
    Assignee: Qnovo Inc.
    Inventors: Dania Ghantous, Fred Berkowitz, Christina Peabody, Nadim Maluf
  • Patent number: 9702940
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to applying a current pulse to the terminals of the battery during a charge, measuring a voltage at the terminals of the battery, selecting a relationship of an open circuit voltage to an amount of charge in the battery using data which is representative of a state of health of the battery, calculating an open circuit voltage of the battery using the voltage measured at the terminals of the battery, a current applied to or removed from the battery and an impedance of the battery, and determining a state of charge of the battery using (i) the calculated open circuit voltage and (ii) the relationship of the open circuit voltage to the amount of charge.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: July 11, 2017
    Assignee: Qnovo Inc.
    Inventors: Nadim Maluf, Dania Ghantous, Fred Berkowitz, Christina Peabody
  • Patent number: 9647472
    Abstract: Circuitry and methods to “capture”, recover, store and/or use electrical energy output and/or generated by the battery/cell as discharge signals of a charging sequence/operation. Such electrical energy may then be “reused” by the charging circuitry or system and/or in the system powered by the battery/cell and/or external to the charging circuitry or battery/cell. The energy output and/or generated by the battery/cell in response to discharge signals of a charging sequence/operation may (1) supply energy to the associated system being powered by the battery, (2) supply charge current to the same battery/cell or another battery/cell, (3) supply charge to one or more cells in a multiple cell battery pack that are at a lower voltage than the other cells, (4) store the charge in a different charge storing device (e.g., a capacitor and/or second battery), and/or (5) heat a battery/cell to improve charging performance.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 9, 2017
    Assignee: Qnovo Inc.
    Inventors: Fred Berkowitz, Nadim Maluf, Dania Ghantous
  • Patent number: 9500713
    Abstract: A system and technique for determining a state of charge (SOC) of a battery having at least two terminals and at least one silicon-based anode, or other anode materials exhibiting hysteretic voltage-SOC dependence such as tin-based anodes (whether partial or full dependence). The system and technique determines whether the battery is in a charge mode or a discharge mode of operation, measures a terminal voltage of the battery, and determines the SOC of the battery using (a) a first predetermined relationship between (i) the terminal voltage of the battery and (ii) the SOC of the battery when the battery is in a charge mode, and (b) a second predetermined relationship between (i) the terminal voltage of the battery and (ii) the SOC of the battery when the battery is in a discharge mode. In one embodiment, the terminal voltage is an equilibrium voltage of the battery.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: November 22, 2016
    Assignee: Qnovo Inc.
    Inventors: Dania Ghantous, Christina Peabody, Nadim Maluf, Fred Berkowitz, Miroslav Zmrzli, David Bruce Koons
  • Patent number: 9461492
    Abstract: A system and method to charge a battery during a charging cycle having a plurality of portions. The method comprises generating a first charge signal during the first portion of the charging cycle, wherein the first charge signal is based on a charge-time parameter. The charge-time parameter correlates a charge time period of the charging cycle to (i) a state of charge of the battery and/or (ii) a charge storage level corresponding to an amount of usage time of the battery. The method further includes applying the first charge signal to the battery during the first portion of the charging cycle, and, in response thereto, charging the battery to provide a state of charge and/or (ii) a charge storage level corresponding to an amount of usage in or within the charge time period of the charge-time parameter.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: October 4, 2016
    Assignee: Qnovo Inc.
    Inventors: Fred Berkowitz, Dania Ghantous, Christina Peabody
  • Patent number: 9385555
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to adaptively charge a battery/cell using data which is representative of a change in terminal voltage of the battery/cell. In another aspect, the present inventions are directed to techniques and/or circuitry to adaptively charge a battery/cell using data which is representative of partial and/or full relaxation time of the battery/cell. In yet another aspect the present inventions are directed to techniques and/or circuitry to determine whether the data which is representative of partial and/or full relaxation time exceeds a predetermined range and/or is greater than a predetermined value.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 5, 2016
    Assignee: Qnovo Inc.
    Inventors: Dania Ghantous, Nadim Maluf, Fred Berkowitz
  • Patent number: 9373972
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to adaptively charge a battery/cell using data which is representative of a change in terminal voltage of the battery/cell. In another aspect, the present inventions are directed to techniques and/or circuitry to adaptively charge a battery/cell using data which is representative of partial and/or full relaxation time of the battery/cell. In yet another aspect the present inventions are directed to techniques and/or circuitry to determine whether the data which is representative of partial and/or full relaxation time exceeds a predetermined range and/or is greater than a predetermined value.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: June 21, 2016
    Assignee: Qnovo Inc.
    Inventors: Dania Ghantous, Nadim Maluf, Fred Berkowitz
  • Publication number: 20150380957
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to adaptively charge a battery/cell using data which is representative of a change in terminal voltage of the battery/cell. In another aspect, the present inventions are directed to techniques and/or circuitry to adaptively charge a battery/cell using data which is representative of partial and/or full relaxation time of the battery/cell. In yet another aspect the present inventions are directed to techniques and/or circuitry to determine whether the data which is representative of partial and/or full relaxation time exceeds a predetermined range and/or is greater than a predetermined value.
    Type: Application
    Filed: September 11, 2015
    Publication date: December 31, 2015
    Inventors: Dania Ghantous, Nadim Maluf, Fred Berkowitz
  • Publication number: 20150377976
    Abstract: The present inventions, in one aspect, are directed to techniques and/or circuitry to determining data which is representative of the state of health, or a change therein, of the battery using the data which is representative of (i) the relaxation time of the battery and/or (ii) the overpotential of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to adapt one or more characteristics of a charge signal using data which is representative of the state of health, or a change therein, of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to determine a state of charge of the battery using data which is representative of the state of health, or a change therein, of the battery.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 31, 2015
    Inventors: Nadim Maluf, Dania Ghantous, Fred Berkowitz, Christina Peabody